1988 - 1998
PAPERS IN REFEREED JOURNALS
|
-
M. F. Fernández, R. Guardiola, J. Ros and M. Znojil,
Strong-coupling expansions for the PT-symmetric oscillators V(x)
= a x + b (ix)^2 + c (ix)^3.
J. Phys. A 31 (1998) 10105 - 12.
-
M. Znojil,
Quantum exotic: A repulsive and bottomless confining potential.
J. Phys. A 31 (1998) 3349 - 55.
-
M. Znojil and Rajkumar Roychoudhury,
Spiked and screened oscillators
V(r) = A r^2 + B/r^2 + C/r^4 + D/r^6 + F/(1 + g r^2)
and their elementary bound states.
Czechosl. J. Phys. 48 (1998) 1 - 8.
-
M. Znojil,
A quick perturbative method for Schroedinger equations
J. Phys. A 30 (1997) 8771 - 83.
-
M. Znojil,
r^D oscillators with arbitrary D > 0 and perturbation expansions
with Sturmians.
J. Math. Phys. 38 (1997) 5087 - 97.
-
M. Znojil,
Asymmetric bound states via the quadrupled
Schroedinger equation.
Phys. Lett. A 230 (1997) 283 - 7.
-
M. Znojil,
Perturbation theory for quantum mechanics in its
Hessenberg-matrix representation
Int. J. Mod. Phys. A 12 (1997) 299 - 304.
-
M. Znojil,
One-dimensional Schroedinger equation and its exact representation on a
discrete lattice.
Phys. Lett. A 223 (1996) 411 - 6.
-
M. Znojil,
Double-well model V(r) = a r^2 + b r^4 + c r^6 with a < 0 and
perturbation method with triangular propagators
Phys. Lett. A 222 (1996) 291 - 8.
-
]
M. Znojil,
Screened Coulomb potential V(r) = (a+br)/(c+dr) in a semi-relativistic
Pauli-Schroedinger equation
J. Phys. A 29 (1996) 6443 - 53.
-
M. Znojil,
Circular vectors and
toroidal matrices,
Rendiconti del Circolo Matematico di Palermo Serie II - Suppl. 39 (1996) 143-8.
-
M. Znojil,
Comment on the letter
"A new efficient method \ldots"
by L. Skala and J. Cizek.
J. Phys. A 29 (1996) 5253 - 6.
-
M. Znojil,
Harmonic oscillations in a quasi-relativistic regime.
J. Phys. A 29 (1996) 2905 - 17.
-
M. Znojil,
Jacobi polynomials and bound states.
J. Math. Chem. 19 (1996) 205 - 13
-
M. Znojil,
Nonlinearized perturbation theories.
J. Nonlin. Math. Phys. 3 (1996) 51 - 62
(the second volume containing contributions of int. conf. ``Symmetries in
Nonlin. Math. Physics" held during
3. - 8. VII 1995 in Kijev).
-
M. Znojil,
The most general iteration scheme for the
Lippmann-Schwinger-type equations.
Phys. Lett. A 211 (1996) 319 - 26.
(cf also
M. Znojil,
The coupled-channel
T-matrix:
Its lowest-order Born + Lanczos approximants.
the more detailed preprint published as
JINR report E4-95-340, Dubna, 1995.)
-
M. Znojil,
Bound-state method with elementary-product wavefunctions
J. Phys. A 28 (1995) 6265-76.
-
M. Znojil,
Minimal relativity and Hulthen potentials.
Phys. Lett. A. 203 (1995) 1-4.
-
M. Znojil,
Non-numerical determination of the number of bound states
in
some screened Coulomb potentials.
Phys. Rev. A. 51 (1995) 128 - 35.
-
M. Znojil,
A generalized Morse asymmetric potential and multiplets of its
non-numerical exact bound states.
J. Phys. A: Math. Gen. 27 (1994) 7491-501.
-
M. Znojil,
Classification of oscillators in the Hessenberg-matrix representation.
J. Phys. A: Math. Gen. 27 (1994) 4945-68.
-
M. Znojil,
Two-sided estimates of energies and the ``forgotten" exactly
solvable
potential $V(r)=-a^2 r^{-2}+b^2 r^{-4}$.
Phys. Lett. A 189 (1994) 1-6.
-
M. Znojil,
An analytic estimate of the number of bound states in the
Lennard-Jones potentials.
Phys. Lett. A 188 (1994) 113-6.
-
M. Znojil,
A new form of re-arrangement of the
Rayleigh-Schrodinger
perturbation series.
Cz. J. Phys. B 44 (1994) 545-56.
-
F. M. Fernandez, R. Guardiola and
M. Znojil,
Riccati-Pade quantization and oscillators $V(r) = g r^{\alpha}$.
Phys. Rev. A 48 (1993) 4170-4.
-
M. Znojil,
Comment on ``The nonsingular spiked harmonic
oscillator"
[J. Math. Phys. 34, 437 (1993)].
J. Math. Phys. 34 (1993) 4914.
-
M. Znojil,
Three-point Pade resummation of perturbation series
for anharmonic oscillators.
Phys. Lett. A 177 (1993) 111-20.
-
M. Znojil,
Spiked harmonic oscillators and Hill determinants.
Phys. Lett. A 169 (1992) 415-21.
-
M. Znojil
and P.G.L.Leach,
On the elementary Schrodinger bound states and their multiplets.
J. Math. Phys. 33 (1992) 2785-2794.
-
M. Znojil,
Pairs of anharmonicities and the double delta expansions.
Phys. Lett. A 164 (1992) 145-8.
-
M. Znojil,
Spiked but still exact harmonic oscillators.
Phys. Lett. A 164 (1992) 138-44.
-
M. Znojil,
Asymmetric anharmonic oscillators in the Hill-determinant picture.
J. Math. Phys. 33 (1992) 213 - 21.
-
M. Znojil,
Quasi-exact states in the Lanczos recurrent picture.
Phys. Lett. A 161 (1991) 191 - 6.
-
M. Znojil,
Potential $V(r) = a r^2 + b r^{-4} + c r^{-6}$ and a new method of
solving the Schrodinger equation.
Phys. Lett. A 158 (1991) 436 - 40.
-
M.F.Flynn, R. Guardiola and
M. Znojil,
The spiked harmonic osillator
$V(r) = r^2 + \lambda r^{-4}$ as a challenge to perturbation theory.
Czech. J. Phys. B 41 (1991) 1019-29.
-
M. Znojil,
The anharmonic oscillator and the range of validity of its Hill
determinant construction.
Phys. Lett. A 155 (1991) 83-86.
-
M. Znojil,
A perturbative Lanczos method.
Phys. Lett. A 155 (1991) 87-93.
-
M. Znojil,
The exact bound-state Ansaetze as zero-order approximants in
perturbation theory.
II: An illustration $V(r) = r^2 + \lambda r^2 / (1 + g r^2).$
Cz. J. Phys. B 41 (1991) 497-512.
-
M. Znojil,
The exact bound-state Ansaetze as zero-order approximants in
perturbation theory.
I: The formalism and Pade oscillators.
Cz. J. Phys. B 41 (1991) 397-408.
-
M. Znojil,
Polynomial oscillators in Heisenberg picture.
Cz. J. Phys. B 41 (1991) 201-8.
-
M. Znojil,
The perturbative method of Hill determinants.
Phys. Lett. A 150 (1990) 67-9.
-
M. Znojil,
Numerically inspired new version of the degenerate
Rayleigh-Schr\"{o}dinger perturbation theory.
Cz. J. Phys. B.40 (1990) 1065-78.
-
M. Znojil,
The generalized continued fractions and potentials of the
Lennard - Jones type.
J. Math. Phys. 31 (1990) 1955-61.
-
M. Znojil,
Singular anharmonicities and the analytic continued fractions.
II. The force $V(r) = a r^2 + b r^{-4} + c r^{-6}.$
J. Math. Phys. 31 (1990) 108 - 12.
-
M. Znojil,
Novel recurrent approach to the generalized
Su-Schrieffer-Heeger Hamiltonians.
Phys. Rev. B 40 (1989) 12468-75.
-
R.F.Bishop, M.F.Flynn and
M. Znojil,
Perturbation theory without unperturbed solutions.
Phys. Rev. A 39 (1989) 5336-49.
-
M. Znojil,
On the power-series construction of the Schr\"{o}dinger
bound states. II.
The effective Hill determinants.
J. Math. Phys. 30 (1989) 413.
-
M. Znojil,
Singular anharmonicities and the analytic continued fractions.
J. Math. Phys. 30 (1989) 23-7.
-
M. Znojil,
Pad\'{e} oscillators and a new formulation of perturbation theory.
J. Math. Phys. 29 (1988) 2611-7.
-
M. Znojil,
An extrapolative diagonalization of incomplete Hamiltonians.
Phys. Lett. A 127 (1988) 383-6.
-
M. Znojil,
On the power-series construction of bound states. I.
The energies as zeros of the infinite Hill determinants.
J. Math. Phys. 29 (1988) 1433-9.
-
M. Znojil,
Vectorial continued fractions and an algebraic construction
of effective Hamiltonians.
J. Math. Phys. 29 (1988) 139-47.
Note: Reprints available
upon an
e-mailed
request.
December 18, 1999