1988 - 1998 PAPERS IN REFEREED JOURNALS




  1. M. F. Fernández, R. Guardiola, J. Ros and M. Znojil,
    Strong-coupling expansions for the PT-symmetric oscillators V(x) = a x + b (ix)^2 + c (ix)^3.
    J. Phys. A 31 (1998) 10105 - 12.

  2. M. Znojil,
    Quantum exotic: A repulsive and bottomless confining potential.
    J. Phys. A 31 (1998) 3349 - 55.

  3. M. Znojil and Rajkumar Roychoudhury,
    Spiked and screened oscillators V(r) = A r^2 + B/r^2 + C/r^4 + D/r^6 + F/(1 + g r^2) and their elementary bound states.
    Czechosl. J. Phys. 48 (1998) 1 - 8.

  4. M. Znojil,
    A quick perturbative method for Schroedinger equations
    J. Phys. A 30 (1997) 8771 - 83.

  5. M. Znojil,
    r^D oscillators with arbitrary D > 0 and perturbation expansions with Sturmians.
    J. Math. Phys. 38 (1997) 5087 - 97.

  6. M. Znojil,
    Asymmetric bound states via the quadrupled Schroedinger equation.
    Phys. Lett. A 230 (1997) 283 - 7.

  7. M. Znojil,
    Perturbation theory for quantum mechanics in its Hessenberg-matrix representation
    Int. J. Mod. Phys. A 12 (1997) 299 - 304.

  8. M. Znojil,
    One-dimensional Schroedinger equation and its exact representation on a discrete lattice.
    Phys. Lett. A 223 (1996) 411 - 6.

  9. M. Znojil,
    Double-well model V(r) = a r^2 + b r^4 + c r^6 with a < 0 and perturbation method with triangular propagators
    Phys. Lett. A 222 (1996) 291 - 8.

  10. ] M. Znojil,
    Screened Coulomb potential V(r) = (a+br)/(c+dr) in a semi-relativistic Pauli-Schroedinger equation
    J. Phys. A 29 (1996) 6443 - 53.

  11. M. Znojil,
    Circular vectors and toroidal matrices,
    Rendiconti del Circolo Matematico di Palermo Serie II - Suppl. 39 (1996) 143-8.

  12. M. Znojil,
    Comment on the letter "A new efficient method \ldots" by L. Skala and J. Cizek.
    J. Phys. A 29 (1996) 5253 - 6.

  13. M. Znojil,
    Harmonic oscillations in a quasi-relativistic regime.
    J. Phys. A 29 (1996) 2905 - 17.

  14. M. Znojil,
    Jacobi polynomials and bound states.
    J. Math. Chem. 19 (1996) 205 - 13

  15. M. Znojil,
    Nonlinearized perturbation theories.
    J. Nonlin. Math. Phys. 3 (1996) 51 - 62 (the second volume containing contributions of int. conf. ``Symmetries in Nonlin. Math. Physics" held during 3. - 8. VII 1995 in Kijev).

  16. M. Znojil,
    The most general iteration scheme for the Lippmann-Schwinger-type equations.
    Phys. Lett. A 211 (1996) 319 - 26.
    (cf also M. Znojil,
    The coupled-channel T-matrix: Its lowest-order Born + Lanczos approximants.
    the more detailed preprint published as JINR report E4-95-340, Dubna, 1995.)

  17. M. Znojil,
    Bound-state method with elementary-product wavefunctions
    J. Phys. A 28 (1995) 6265-76.

  18. M. Znojil,
    Minimal relativity and Hulthen potentials.
    Phys. Lett. A. 203 (1995) 1-4.

  19. M. Znojil,
    Non-numerical determination of the number of bound states in some screened Coulomb potentials.
    Phys. Rev. A. 51 (1995) 128 - 35.

  20. M. Znojil,
    A generalized Morse asymmetric potential and multiplets of its non-numerical exact bound states.
    J. Phys. A: Math. Gen. 27 (1994) 7491-501.

  21. M. Znojil,
    Classification of oscillators in the Hessenberg-matrix representation.
    J. Phys. A: Math. Gen. 27 (1994) 4945-68.

  22. M. Znojil,
    Two-sided estimates of energies and the ``forgotten" exactly solvable potential $V(r)=-a^2 r^{-2}+b^2 r^{-4}$.
    Phys. Lett. A 189 (1994) 1-6.

  23. M. Znojil,
    An analytic estimate of the number of bound states in the Lennard-Jones potentials.
    Phys. Lett. A 188 (1994) 113-6.

  24. M. Znojil,
    A new form of re-arrangement of the Rayleigh-Schrodinger perturbation series.
    Cz. J. Phys. B 44 (1994) 545-56.

  25. F. M. Fernandez, R. Guardiola and M. Znojil,
    Riccati-Pade quantization and oscillators $V(r) = g r^{\alpha}$.
    Phys. Rev. A 48 (1993) 4170-4.

  26. M. Znojil,
    Comment on ``The nonsingular spiked harmonic oscillator" [J. Math. Phys. 34, 437 (1993)].
    J. Math. Phys. 34 (1993) 4914.

  27. M. Znojil,
    Three-point Pade resummation of perturbation series for anharmonic oscillators.
    Phys. Lett. A 177 (1993) 111-20.

  28. M. Znojil,
    Spiked harmonic oscillators and Hill determinants.
    Phys. Lett. A 169 (1992) 415-21.

  29. M. Znojil and P.G.L.Leach,
    On the elementary Schrodinger bound states and their multiplets.
    J. Math. Phys. 33 (1992) 2785-2794.

  30. M. Znojil,
    Pairs of anharmonicities and the double delta expansions.
    Phys. Lett. A 164 (1992) 145-8.

  31. M. Znojil,
    Spiked but still exact harmonic oscillators.
    Phys. Lett. A 164 (1992) 138-44.

  32. M. Znojil,
    Asymmetric anharmonic oscillators in the Hill-determinant picture.
    J. Math. Phys. 33 (1992) 213 - 21.

  33. M. Znojil,
    Quasi-exact states in the Lanczos recurrent picture.
    Phys. Lett. A 161 (1991) 191 - 6.

  34. M. Znojil,
    Potential $V(r) = a r^2 + b r^{-4} + c r^{-6}$ and a new method of solving the Schrodinger equation.
    Phys. Lett. A 158 (1991) 436 - 40.

  35. M.F.Flynn, R. Guardiola and M. Znojil,
    The spiked harmonic osillator $V(r) = r^2 + \lambda r^{-4}$ as a challenge to perturbation theory.
    Czech. J. Phys. B 41 (1991) 1019-29.

  36. M. Znojil,
    The anharmonic oscillator and the range of validity of its Hill determinant construction.
    Phys. Lett. A 155 (1991) 83-86.

  37. M. Znojil,
    A perturbative Lanczos method.
    Phys. Lett. A 155 (1991) 87-93.

  38. M. Znojil,
    The exact bound-state Ansaetze as zero-order approximants in perturbation theory. II: An illustration $V(r) = r^2 + \lambda r^2 / (1 + g r^2).$
    Cz. J. Phys. B 41 (1991) 497-512.

  39. M. Znojil,
    The exact bound-state Ansaetze as zero-order approximants in perturbation theory. I: The formalism and Pade oscillators.
    Cz. J. Phys. B 41 (1991) 397-408.

  40. M. Znojil,
    Polynomial oscillators in Heisenberg picture.
    Cz. J. Phys. B 41 (1991) 201-8.

  41. M. Znojil,
    The perturbative method of Hill determinants.
    Phys. Lett. A 150 (1990) 67-9.

  42. M. Znojil,
    Numerically inspired new version of the degenerate Rayleigh-Schr\"{o}dinger perturbation theory.
    Cz. J. Phys. B.40 (1990) 1065-78.

  43. M. Znojil,
    The generalized continued fractions and potentials of the Lennard - Jones type.
    J. Math. Phys. 31 (1990) 1955-61.

  44. M. Znojil,
    Singular anharmonicities and the analytic continued fractions. II. The force $V(r) = a r^2 + b r^{-4} + c r^{-6}.$
    J. Math. Phys. 31 (1990) 108 - 12.

  45. M. Znojil,
    Novel recurrent approach to the generalized Su-Schrieffer-Heeger Hamiltonians.
    Phys. Rev. B 40 (1989) 12468-75.

  46. R.F.Bishop, M.F.Flynn and M. Znojil,
    Perturbation theory without unperturbed solutions.
    Phys. Rev. A 39 (1989) 5336-49.

  47. M. Znojil,
    On the power-series construction of the Schr\"{o}dinger bound states. II. The effective Hill determinants.
    J. Math. Phys. 30 (1989) 413.

  48. M. Znojil,
    Singular anharmonicities and the analytic continued fractions.
    J. Math. Phys. 30 (1989) 23-7.

  49. M. Znojil,
    Pad\'{e} oscillators and a new formulation of perturbation theory.
    J. Math. Phys. 29 (1988) 2611-7.

  50. M. Znojil,
    An extrapolative diagonalization of incomplete Hamiltonians.
    Phys. Lett. A 127 (1988) 383-6.

  51. M. Znojil,
    On the power-series construction of bound states. I. The energies as zeros of the infinite Hill determinants.
    J. Math. Phys. 29 (1988) 1433-9.

  52. M. Znojil,
    Vectorial continued fractions and an algebraic construction of effective Hamiltonians.
    J. Math. Phys. 29 (1988) 139-47.


Note: Reprints available upon an e-mailed request.
December 18, 1999