1988 - 1998
 PAPERS IN REFEREED JOURNALS
    
  | 
 
- 
M. F. Fernández, R. Guardiola, J. Ros and M. Znojil,
Strong-coupling expansions for the PT-symmetric oscillators V(x)
= a x + b (ix)^2 + c (ix)^3.
J. Phys. A 31 (1998) 10105 - 12.
 
- 
        
  M. Znojil,
Quantum exotic: A repulsive and bottomless confining potential.
J. Phys. A 31 (1998) 3349 - 55.
 
- 
        
  M. Znojil and Rajkumar Roychoudhury,
Spiked and screened oscillators
V(r) = A r^2 + B/r^2 + C/r^4 + D/r^6 + F/(1 + g r^2)
and their elementary bound states.
  Czechosl. J. Phys. 48 (1998) 1 - 8.
 
- 
        
  M. Znojil,
A quick perturbative method for Schroedinger equations
J. Phys. A 30 (1997) 8771 - 83.
 
- 
        
  M. Znojil,
r^D oscillators with arbitrary D > 0 and perturbation expansions
with Sturmians.
  J. Math. Phys. 38 (1997) 5087 - 97.
 
- 
        
  M. Znojil,
Asymmetric bound states via the quadrupled
 Schroedinger equation.
 Phys. Lett. A 230 (1997) 283 - 7.
 
- 
        
  M. Znojil,
Perturbation theory for quantum mechanics in its
Hessenberg-matrix representation
 Int. J. Mod. Phys. A 12 (1997) 299 - 304.
 
- 
        
  M. Znojil,
One-dimensional Schroedinger equation and its exact representation on a
discrete lattice.
 Phys. Lett. A 223 (1996) 411 - 6.
 
- 
        
  M. Znojil,
Double-well model V(r) = a r^2 + b r^4 + c r^6 with a < 0 and
perturbation method with triangular propagators
 Phys. Lett. A 222 (1996) 291 - 8.
 
- 
        ]
  M. Znojil,
Screened Coulomb potential V(r) = (a+br)/(c+dr) in a semi-relativistic
Pauli-Schroedinger equation
J. Phys. A 29 (1996) 6443 - 53.
 
- 
        
  M. Znojil,
Circular vectors and
toroidal matrices,
Rendiconti del Circolo Matematico di Palermo Serie II - Suppl. 39 (1996) 143-8.
 - 
        
  M. Znojil,
Comment on the letter
"A new efficient method \ldots"
by L. Skala and J. Cizek.
J. Phys. A 29 (1996) 5253 - 6.
 
- 
        
  M. Znojil,
Harmonic oscillations in a quasi-relativistic regime.
J. Phys. A 29 (1996) 2905 - 17.
 
- 
        
  M. Znojil,
Jacobi polynomials and bound states.
J. Math. Chem. 19 (1996)  205 - 13
 
- 
        
  M. Znojil,
Nonlinearized perturbation theories.
J. Nonlin. Math. Phys. 3 (1996) 51 - 62
(the second volume containing contributions of int. conf. ``Symmetries in
Nonlin. Math. Physics" held during
3. - 8. VII 1995 in Kijev).
 - 
        
  M. Znojil,
The most general iteration scheme for the
Lippmann-Schwinger-type equations.
Phys. Lett. A 211 (1996) 319 - 26.
        (cf also
  M. Znojil,
The coupled-channel
T-matrix:
Its lowest-order Born + Lanczos approximants.
  the more detailed preprint published as
JINR report E4-95-340, Dubna, 1995.)
 - 
        
  M. Znojil,
Bound-state method with elementary-product wavefunctions
J. Phys. A 28 (1995) 6265-76.
 - 
        
  M. Znojil,
Minimal relativity and Hulthen potentials.
Phys. Lett. A. 203 (1995) 1-4.
 - 
        
  M. Znojil,
Non-numerical determination of the number of bound states
in
some screened Coulomb potentials.
Phys. Rev. A. 51 (1995) 128 - 35.
 - 
        
  M. Znojil,
A generalized Morse asymmetric potential and multiplets of its
non-numerical exact bound states.
J. Phys. A: Math. Gen. 27 (1994) 7491-501.
 - 
        
  M. Znojil,
Classification of oscillators in the Hessenberg-matrix representation.
J. Phys. A: Math. Gen. 27 (1994) 4945-68.
 - 
        
  M. Znojil,
Two-sided estimates of energies and the ``forgotten" exactly
solvable
potential $V(r)=-a^2 r^{-2}+b^2 r^{-4}$.
Phys. Lett. A 189 (1994) 1-6.
 - 
        
  M. Znojil,
An analytic estimate of the number of bound states in the
Lennard-Jones potentials.
Phys. Lett. A 188 (1994) 113-6.
 - 
        
  M. Znojil,
 A new form of re-arrangement of the
Rayleigh-Schrodinger
 perturbation series.
Cz. J. Phys. B 44 (1994) 545-56.
 - 
        
F. M. Fernandez, R. Guardiola and
M. Znojil,
Riccati-Pade quantization and oscillators $V(r) = g r^{\alpha}$.
Phys. Rev. A 48 (1993) 4170-4.
 - 
        
  M. Znojil,
 Comment on  ``The nonsingular spiked harmonic
oscillator"
        [J. Math. Phys. 34, 437 (1993)].
J. Math. Phys. 34 (1993) 4914.
 - 
        
  M. Znojil,
 Three-point Pade resummation of perturbation series
for anharmonic oscillators.
Phys. Lett. A 177 (1993) 111-20.
 - 
        
  M. Znojil,
 Spiked harmonic oscillators and Hill determinants.
     Phys. Lett. A 169 (1992) 415-21.
 - 
        
  M. Znojil
 and P.G.L.Leach,
     On the elementary Schrodinger bound states and their multiplets.
     J. Math. Phys. 33 (1992) 2785-2794.
 - 
        
  M. Znojil,
 Pairs of anharmonicities and the double delta expansions.
     Phys. Lett. A 164 (1992) 145-8.
 - 
        
  M. Znojil,
 Spiked but still exact harmonic oscillators.
     Phys. Lett. A 164 (1992) 138-44.
 - 
        
  M. Znojil,
 Asymmetric anharmonic oscillators in the Hill-determinant picture.
     J. Math. Phys. 33 (1992) 213 - 21.
 - 
        
  M. Znojil,
 Quasi-exact states in the Lanczos recurrent picture.
     Phys. Lett. A 161 (1991) 191 - 6.
 - 
        
  M. Znojil,
 Potential $V(r) = a r^2 + b r^{-4} + c r^{-6}$ and a new method of
    solving the Schrodinger equation.
    Phys. Lett. A 158 (1991) 436 - 40.
 - 
        
M.F.Flynn, R. Guardiola and
M. Znojil,
The spiked harmonic osillator
    $V(r) = r^2 + \lambda r^{-4}$ as a challenge to perturbation theory.
    Czech. J. Phys. B 41 (1991) 1019-29.
 - 
        
  M. Znojil,
  The anharmonic oscillator and the range of validity of its Hill
     determinant construction.
     Phys. Lett. A 155 (1991) 83-86.
 - 
        
  M. Znojil,
 A perturbative Lanczos method.
    Phys. Lett. A 155 (1991) 87-93.
 - 
        
  M. Znojil,
 The exact bound-state Ansaetze as zero-order approximants in
    perturbation theory.
    II: An illustration $V(r) = r^2 + \lambda r^2 / (1 + g r^2).$
    Cz. J. Phys. B 41 (1991) 497-512.
 - 
        
  M. Znojil,
 The exact bound-state Ansaetze as zero-order approximants in
    perturbation theory.
I: The formalism and Pade oscillators.
    Cz. J. Phys. B 41 (1991) 397-408.
 
- 
M. Znojil,
 Polynomial oscillators in Heisenberg picture.
     Cz. J. Phys. B 41 (1991) 201-8.
  
- 
M. Znojil,
 The perturbative method of Hill determinants.
  Phys. Lett. A 150 (1990) 67-9.
  
- 
M. Znojil,
Numerically inspired new version of the degenerate
    Rayleigh-Schr\"{o}dinger perturbation theory.
      Cz. J. Phys. B.40 (1990) 1065-78.
  
- 
M. Znojil,
 The generalized continued fractions and potentials of the
    Lennard - Jones type.
      J. Math. Phys. 31 (1990) 1955-61.
  
- 
M. Znojil,
Singular anharmonicities and the analytic continued fractions.
    II. The force $V(r) = a r^2 + b r^{-4} + c r^{-6}.$
    J. Math. Phys. 31 (1990) 108 - 12.
  
- 
M. Znojil,
Novel recurrent approach to the generalized
    Su-Schrieffer-Heeger Hamiltonians.
   Phys. Rev. B 40 (1989) 12468-75.
  
- 
  R.F.Bishop, M.F.Flynn and
M. Znojil,
Perturbation theory without unperturbed solutions.
      Phys. Rev. A 39 (1989) 5336-49.
  
- 
M. Znojil,
 On the power-series construction of the Schr\"{o}dinger
    bound states. II.
    The effective Hill determinants.
      J. Math. Phys. 30 (1989) 413.
  
- 
M. Znojil,
Singular anharmonicities and the analytic continued fractions.
   J. Math. Phys. 30 (1989) 23-7.
  
- 
M. Znojil,
 Pad\'{e} oscillators and a new formulation of perturbation theory.
  J. Math. Phys. 29 (1988) 2611-7.
  
- 
M. Znojil,
 An extrapolative diagonalization of incomplete Hamiltonians.
  Phys. Lett. A 127 (1988) 383-6.
  
- 
M. Znojil,
 On the power-series construction of bound states. I.
    The energies as zeros of the infinite Hill determinants.
J. Math. Phys. 29 (1988) 1433-9.
  
- 
M. Znojil,
Vectorial continued fractions and an algebraic construction
    of effective Hamiltonians.
     J. Math. Phys. 29 (1988) 139-47.
  
Note: Reprints available
upon an
e-mailed
 request.
December 18, 1999