| Zentralblatt MATH - REVIEW SUBMISSION FORM |
Zentralblatt MATH
HOME
|
| Name: | ||||
| Miloslav Znojil | ||||
| Reviewer number: | ||||
| 9689 | ||||
| Email: | ||||
| znojil@ujf.cas.cz | ||||
| Item's zbl-Number: | ||||
| DE 018 393 623 | ||||
| Author(s): | ||||
| Yurko, Viacheslav: | ||||
| Shorttitle: | ||||
| Integral transforms connected with higher-ordere differential operators with a singularity. | ||||
| Source: | ||||
| Integral Transforms Spec. Funct. 13, No. 6, 497 - 511 (2002) | ||||
| Classification: | ||||
| ||||
| Primary Classification: | ||||
| ||||
| Secondary Classification: | ||||
| ||||
| Keywords: | ||||
| differential equation with a singularity; boundary value problem; spectrum; completeness theorem; expansion convergence theorem | ||||
| Review: | ||||
The key result is that the system of eigen- and associated functions in a certain class L of boundary value problems is complete in a certain Banach space of functions on an interval (0,T). The gist of the paper (which is a continuation of the lasting author's research in this direction) lies in the admission of a strong singularity in differential equation at a point x=a within the interval (0,T), compensated by certain ``matching" conditions imposed at the singular point. The spectra and properties of expansions (e.g., uniformity of convergence) are studied in detail. | ||||
| Remarks to the editors: | ||||