| Zentralblatt MATH - REVIEW SUBMISSION FORM |
Zentralblatt MATH
HOME
|
| Name: | ||||||||||||
| Miloslav Znojil | ||||||||||||
| Reviewer number: | ||||||||||||
| 9689 | ||||||||||||
| Email: | ||||||||||||
| znojil@ujf.cas.cz | ||||||||||||
| Item's zbl-Number: | ||||||||||||
| DE 015 789 324 | ||||||||||||
| Author(s): | ||||||||||||
| Migallon, Violeta; Penades, Jose; Szyld, Daniel B. | ||||||||||||
| Shorttitle: | ||||||||||||
| Nonstationary multisplittings with general weighting matrices | ||||||||||||
| Source: | ||||||||||||
| SIAM J. Matrix Anal. Appl. 22, No. 4, 1089-1094 (2001) | ||||||||||||
| Classification: | ||||||||||||
| Primary Classification: | ||||||||||||
| ||||||||||||
| Secondary Classification: | ||||||||||||
Keywords:
| linear systems; iterative methods; parallel algorithms; symmetric positive definite and semidefinite matrices; weighted splitting; | Review: | During an iterative solution of a linear algebraic system of equations with a symmetric positive definite matrix A, one may split the matrix A = M - N multiply, i.e., using some p different splittings with non-singular M's and with related scalar weights E. A parallelized version of such an algorithm requires a matrix form of E. The paper offers the corresponding generalization of the convergence theorems. Thus, one can make several iterations (with a ``non-stationary" block-dependence of their number) in each processor. The authors also extend their analysis to two-stage parallelized iterative treatment of a semi-definite matrix A. Remarks to the editors: |
| | |||||||