Zentralblatt MATH - REVIEW SUBMISSION FORM |
Zentralblatt MATH
HOME
|
Name: | ||||||||||||
Miloslav Znojil | ||||||||||||
Reviewer number: | ||||||||||||
9689 | ||||||||||||
Email: | ||||||||||||
Item's zbl-Number: | ||||||||||||
DE 018 027 247 | ||||||||||||
Author(s): | ||||||||||||
Wang, Tai-Lin; Gragg, William B.: | ||||||||||||
Shorttitle: | ||||||||||||
Convergence of the shifted QR algorithm for unitary hessenberg matrices | ||||||||||||
Source: | ||||||||||||
Math. Comput. 71, No. 240, 1473 - 1496 (2002). | ||||||||||||
Classification: | ||||||||||||
Primary Classification: | ||||||||||||
| ||||||||||||
Secondary Classification: | ||||||||||||
Keywords:
| QR algorithm; shift strategy; unitary Hessenberg matrices | Review: | There are differences between Hessenberg matrices, at least from the point of view of the QR algorithm. The authors argue that in contrast to the generic case (where the asymptotic rate of convergence may be shown quadratic, for the tridiagonal case at lest), an additional requirement of the unitarity of the matrix may play a crucial role. They prove that under this assumption the rate of the convergence becomes at least cubic. Moreover, a recommended (modified) Wilkinson shift is able to lead to the convergence which is global. In a climax of the story a mixed strategy is analyzed and recommended. Based on the PhD thesis of the first author. Remarks to the editors: |
| |