Zentralblatt MATH - REVIEW SUBMISSION FORM |
Zentralblatt MATH
HOME
|
Name: | ||||||||||||||||||||||||
Miloslav Znojil | ||||||||||||||||||||||||
Reviewer number: | ||||||||||||||||||||||||
9689 | ||||||||||||||||||||||||
Email: | ||||||||||||||||||||||||
znojil@ujf.cas.cz | ||||||||||||||||||||||||
Item's zbl-Number: | ||||||||||||||||||||||||
DE015322136 | ||||||||||||||||||||||||
Author(s): | ||||||||||||||||||||||||
Loutsenko, Igor; Spiridonov, Vyacheslav: | ||||||||||||||||||||||||
Shorttitle: | ||||||||||||||||||||||||
Self-similarity in spectral problems and q-special functions | ||||||||||||||||||||||||
Source: | ||||||||||||||||||||||||
In: Levi, Decio (ed.) et al, Symmetries and integrability of difference equations, CRM Proc. Lecture Notes 25, 273-293 (2000). | ||||||||||||||||||||||||
Classification: | ||||||||||||||||||||||||
Primary Classification: | ||||||||||||||||||||||||
| ||||||||||||||||||||||||
Secondary Classification: | ||||||||||||||||||||||||
Keywords:
| Schroedinger factorization, chains of Hamiltonians, seld-similar reductions, q-special functions, infinite soliton systems, supersymmetry, coherent states, orthgonal polynomials, one-dimensional Ising chains, random matrices | Review: | A review of several subjects related to the finite-difference equations, unified by the idea of contemplating Schroedinger equation in one dimension and of transforming its solutions and spectra in the way which could mimic a self-similar pattern. The first connection is found in the inverse scattering (or Darboux or factorization or supersymmetric) context where the self-similarity of the (chains of) partner potentials is interpreted as related to the so called quantum algebra symmetries. Their realization using coherent states reveals nontrivial connections to Ramanujan q-beta integral. In a discrete analogue of this case (using recurrences with orthogonal polynomials) one gets close to the q-analogues of some Painleve transcendents. In solitonic context one studies the one-dimensional Ising chains and gets basic hypergeometric series and their relationship to KP solitons and random matrix models. All these exciting ideas are very fresh and present just certain first steps towards a formation of a Galois theory for operator equations. Remarks to the editors: |
| |