Zentralblatt MATH - REVIEW SUBMISSION FORM |
Zentralblatt MATH
HOME
|
Name: | ||||||||||||||
Miloslav Znojil | ||||||||||||||
Reviewer number: | ||||||||||||||
9689 | ||||||||||||||
Email: | ||||||||||||||
znojil@ujf.cas.cz | ||||||||||||||
Item's zbl-Number: | ||||||||||||||
DE015465442 | ||||||||||||||
Author(s): | ||||||||||||||
Ipsen, Ilse C. F.: | ||||||||||||||
Shorttitle: | ||||||||||||||
Overview of relative sin theta theorems for invariant subspaces | ||||||||||||||
Source: | ||||||||||||||
J. Comput. Appl. Math. 123, No. 1-2, 131-153 (2000). | ||||||||||||||
Classification: | ||||||||||||||
Primary Classification: | ||||||||||||||
| ||||||||||||||
Secondary Classification: | ||||||||||||||
Keywords:
| invariant subspace, rotation by perturbation, bounds on angle, dependence on eigenvalues, grading and scaling, reliable computation of eigenvectors | Review: | A complex square matrix is assumed to possess an invariant subspace, and a change of this subspace under a perturbation is measured by a certain ``pricipal" angle. For its sinus, a number of estimates is reviewed/listed for both the additive and multiplicative perturbations and different assumptions about the matrix. The review, a successor of similar surveys, offers another set of explanations why certain high-accuracy diagonalization methods are so reliable. It is well written and well understandable, with both the ideas and technicalities amply illustrated by the three-dimensional or partitioned examples. Remarks to the editors: |
| |