Zentralblatt MATH - REVIEW SUBMISSION FORM |
Zentralblatt MATH
HOME
|
Name: | ||||||||||||
Miloslav Znojil | ||||||||||||
Reviewer number: | ||||||||||||
9689 | ||||||||||||
Email: | ||||||||||||
znojil@ujf.cas.cz | ||||||||||||
Item's zbl-Number: | ||||||||||||
DE 016 719 360 | ||||||||||||
Author(s): | ||||||||||||
Rojo, O.; Soto, R.; Egana, J.: | ||||||||||||
Shorttitle: | ||||||||||||
Construction of a positive oscillatory matrix with a prescribed spectrum | ||||||||||||
Source: | ||||||||||||
Comput. Math. Appl. 41, Noo. 3 - 4, 353 - 361 (2001). | ||||||||||||
Classification: | ||||||||||||
Primary Classification: | ||||||||||||
| ||||||||||||
Secondary Classification: | ||||||||||||
Keywords:
| totally positive matrices; oscillatory matrices; inverse eigenvalue problem; matrices of minors; | Review: | Small vibrations of elastic systems are closely related to the so called oscillatory matrices A of order n, and the paper offers a new re-construction of an A from its decreasing n-plet of positive eigenvalues. There are several key ideas used: firstly the fact that the (n-1)-st power of the tridiagonal A is totally positive, secondly a trick re-parametrizing the spectrum and giving the related auxiliary T whose (n-1)-compound matrix is shown to be the desired new, cheaper and numerically stable representation of A. Remarks to the editors: |
| |