| Zentralblatt MATH - REVIEW SUBMISSION FORM |  
 Zentralblatt MATH
HOME
 | 
| Name: | ||||||||||||||||||||
| Miloslav Znojil | ||||||||||||||||||||
| Reviewer number: | ||||||||||||||||||||
| 9689 | ||||||||||||||||||||
| Email: | ||||||||||||||||||||
| znojil@ujf.cas.cz | ||||||||||||||||||||
| Item's zbl-Number: | ||||||||||||||||||||
| DE 016 852 173 | ||||||||||||||||||||
| Author(s): | ||||||||||||||||||||
| Makin, A. S.: | ||||||||||||||||||||
| Shorttitle: | ||||||||||||||||||||
| On many-point spectral boundary value problems. | ||||||||||||||||||||
| Source: | ||||||||||||||||||||
| Differ. Equ. 36, No. 10, 1461 - 1468 (2000); translation from Differ. Uravn. 36, No. 10, 1324 - 1330 (2000). | ||||||||||||||||||||
| Classification: | ||||||||||||||||||||
| 
 Primary Classification: |  | 
 Secondary Classification: |  | 
 Keywords: | Review: | The growing role of the non-Hermitian Hamiltonians in physics (the most fresh Los Alamos preprint arXiv: math-ph/0205002 by B. Bagchi and C. Quesne may be recalled for review and typical illustration) is paralleled by a perceivable intensification of their rigorous studies. This represents a strong motivation for the study of the Laplace operator on a finite interval with the Dirichlet boundary condition at the mere left end. In the letter in question this operator is made non-self-adjoint via the generalized right-end boundary condition, complementing its usual mixed form by a strongly non-local term (viz, by a superposition of the first derivatives at an m-plet of internal points). For the resulting Bitsadze-Samarskii (or generalized Samarskii-Ionkin) solutions (forming a bi-orthogonal basis in the corresponding Hilbert space) the author proves a bound for the norms and (sizes of) eigenvalues. An appeal of this result stems from the fact that the m-plet of internal points must be assumed rational. Otherwise, the estimate is shown to cease to be valid. The author also outlines a few further improvements of his/her estimate in the rational cases. Remarks to the editors: |  |  | ||||||||||||