Zentralblatt MATH - REVIEW SUBMISSION FORM |
Zentralblatt MATH
HOME
|
Name: | ||||||||||||||||||||
Miloslav Znojil | ||||||||||||||||||||
Reviewer number: | ||||||||||||||||||||
9689 | ||||||||||||||||||||
Email: | ||||||||||||||||||||
znojil@ujf.cas.cz | ||||||||||||||||||||
Item's zbl-Number: | ||||||||||||||||||||
DE 016 852 173 | ||||||||||||||||||||
Author(s): | ||||||||||||||||||||
Makin, A. S.: | ||||||||||||||||||||
Shorttitle: | ||||||||||||||||||||
On many-point spectral boundary value problems. | ||||||||||||||||||||
Source: | ||||||||||||||||||||
Differ. Equ. 36, No. 10, 1461 - 1468 (2000); translation from Differ. Uravn. 36, No. 10, 1324 - 1330 (2000). | ||||||||||||||||||||
Classification: | ||||||||||||||||||||
Primary Classification:
|
|
Secondary Classification: |
|
Keywords:
| Review: | The growing role of the non-Hermitian Hamiltonians in physics (the most fresh Los Alamos preprint arXiv: math-ph/0205002 by B. Bagchi and C. Quesne may be recalled for review and typical illustration) is paralleled by a perceivable intensification of their rigorous studies. This represents a strong motivation for the study of the Laplace operator on a finite interval with the Dirichlet boundary condition at the mere left end. In the letter in question this operator is made non-self-adjoint via the generalized right-end boundary condition, complementing its usual mixed form by a strongly non-local term (viz, by a superposition of the first derivatives at an m-plet of internal points). For the resulting Bitsadze-Samarskii (or generalized Samarskii-Ionkin) solutions (forming a bi-orthogonal basis in the corresponding Hilbert space) the author proves a bound for the norms and (sizes of) eigenvalues. An appeal of this result stems from the fact that the m-plet of internal points must be assumed rational. Otherwise, the estimate is shown to cease to be valid. The author also outlines a few further improvements of his/her estimate in the rational cases. Remarks to the editors: |
| |