Zentralblatt MATH - REVIEW SUBMISSION FORM |
Zentralblatt MATH
HOME
|
Name: | ||||||||||||||||||||||
Miloslav Znojil | ||||||||||||||||||||||
Reviewer number: | ||||||||||||||||||||||
9689 | ||||||||||||||||||||||
Email: | ||||||||||||||||||||||
znojil@ujf.cas.cz | ||||||||||||||||||||||
Item's zbl-Number: | ||||||||||||||||||||||
DE 016 854 409 | ||||||||||||||||||||||
Author(s): | ||||||||||||||||||||||
Lomov, I. S.: | ||||||||||||||||||||||
Shorttitle: | ||||||||||||||||||||||
The local convergence of biorthogonal series related to differential operators with nonsmooth coefficients. II. | ||||||||||||||||||||||
Source: | ||||||||||||||||||||||
Differ. Equ. 37, 680 - 694 (2001); translation from Differ. Uravn. 37, No. 5, 648 - 660 (2001). | ||||||||||||||||||||||
Classification: | ||||||||||||||||||||||
Primary Classification:
|
|
Secondary Classification: |
|
Keywords:
| non-selfadjoint ordinary linear differential operator of even order; set of the eigenfunctions and associated functions; biorthogonal set; partial sums of the biorthogonal series; partial sums of the Fourier trigonomertric series; equiconvergence estimates | Review: | Part II (or rather a technical appendix to part I) of a study of | the so called equiconvergence which compares the bi-orthogonal expansions with trigonometric Fourier series. The former expansions are assumed generated by the root functions (i.e., eigenfunctions and the associated functions) of a certain non-self-adjoint ordinary differential operator L of order 2n. One, in particular, appreciates that the bi-orthogonal states need not by themselves be related to the adjoint operator (which even need not exist). The author gives the detailed proof of the key lemma on estimates on integrals, and formulates and proves the theorem on the basis property on local sets. On this background he in effect completes the proof of the equiconvergence rate theorem of part I. Remarks to the editors: |
| |