Zentralblatt MATH - REVIEW SUBMISSION FORM |
Zentralblatt MATH
HOME
|
Name: | ||||||||||||||||||||||||||
Miloslav Znojil | ||||||||||||||||||||||||||
Reviewer number: | ||||||||||||||||||||||||||
9689 | ||||||||||||||||||||||||||
Email: | ||||||||||||||||||||||||||
znojil@ujf.cas.cz | ||||||||||||||||||||||||||
Item's zbl-Number: | ||||||||||||||||||||||||||
DE 016 852 647 | ||||||||||||||||||||||||||
Author(s): | ||||||||||||||||||||||||||
Lomov, I. S.: | ||||||||||||||||||||||||||
Shorttitle: | ||||||||||||||||||||||||||
The local convergence of biorthogonal series related to differential operators with nonsmooth coefficients. I. | ||||||||||||||||||||||||||
Source: | ||||||||||||||||||||||||||
Differ. Equ. 37, 351 - 366 (2001); translation from Differ. Uravn. 37, No. 3, 328 - 342 (2001). | ||||||||||||||||||||||||||
Classification: | ||||||||||||||||||||||||||
Primary Classification:
|
|
Secondary Classification: |
|
Keywords:
| non-selfadjoint ordinary linear differential operator of even order; set of the eigenfunctions and associated functions; biorthogonal set; partial sums of the biorthogonal series; partial sums of the Fourier trigonomertric series; equiconvergence estimates | Review: | Known results on the convergence rate of Fourier trigonometric series may be transferred to the case of any bi-orthogonal expansion via the so called equiconvergence theorem. In such a setting the author contemplates a non-self-adjoint ordinary differential operator L of order 2n and its so called root functions (i.e., eigenfunctions and the associated functions). Knowing that the systems bi-orthogonal to these functions need not necessarily be related to the adjoint operator (the existence of which need not be guaranteed), the author continues his older analysis of the n=1 special case (reference [2]) and proves several auxiliary lemmas and, partially, his main theorem on the equiconvergence rate of the bi-orthogonal expansions in question. Several interesting aspects of this type of problem are pointed out in the introduction, and a few key ingredients of the proof (and, in particular, an overall theorem on the local basis property and some necessary estimates of integrals) are deferred to the part two of the series. Remarks to the editors: |
| |