Zentralblatt MATH - REVIEW SUBMISSION FORM |
Zentralblatt MATH
HOME
|
Name: | ||||||||||||||||||||
Miloslav Znojil | ||||||||||||||||||||
Reviewer number: | ||||||||||||||||||||
9689 | ||||||||||||||||||||
Email: | ||||||||||||||||||||
znojil@ujf.cas.cz | ||||||||||||||||||||
Item's zbl-Number: | ||||||||||||||||||||
DE 018 027 917 | ||||||||||||||||||||
Author(s): | ||||||||||||||||||||
Xie, Dongxiu; Hu, Xiyan; Zhang, Lei: | ||||||||||||||||||||
Shorttitle: | ||||||||||||||||||||
The solvability conditions for inverse eigenvalue problem of anti-bisymmetric matrices. | ||||||||||||||||||||
Source: | ||||||||||||||||||||
J. Comput. Math. 20, No. 3, 245 - 256 (2002). | ||||||||||||||||||||
Classification: | ||||||||||||||||||||
Primary Classification:
|
|
Secondary Classification: |
|
Keywords:
| Inverse eigenvalue problem; Frobenius norm; approximate solution by a real bi-antisymmetric matrix | Review: | Among all the inverse eigenvalue problems the authors pick up the following two. Problem I: Given X (= m complex eigenvectors of some A) and knowing the m related complex eigenvalues, search for A in the class of the so called anti-bisymmetric n by n real matrices (i.e., matrices which are anti-symmetric with respect to both main diagonals). Problem II: Over the solution set, find an element with the minimal distance (in the sense of Frobenius norm) from a given real matrix. In the second context, the authors construct the solution set and give the expression for the solution, separating the even and odd dimensions n. In the former problem, they also add some necessary and sufficient conditions of its solvability. Remarks to the editors: |
| |