Zentralblatt MATH - REVIEW SUBMISSION FORM |
Zentralblatt MATH
HOME
|
Name: | ||||||||||||||||||||||
Miloslav Znojil | ||||||||||||||||||||||
Reviewer number: | ||||||||||||||||||||||
9689 | ||||||||||||||||||||||
Email: | ||||||||||||||||||||||
znojil@ujf.cas.cz | ||||||||||||||||||||||
Item's zbl-Number: | ||||||||||||||||||||||
DE 017 218 37X | ||||||||||||||||||||||
Author(s): | ||||||||||||||||||||||
Kong, Q.; Wu, H.; Zettl, A.: | ||||||||||||||||||||||
Shorttitle: | ||||||||||||||||||||||
Left-definite Sturm-Liouville problems. | ||||||||||||||||||||||
Source: | ||||||||||||||||||||||
J. Differ. Equations 177, No. 1, 1 - 26, doi:10.1006/jdeq.2001.3997 (2001). | ||||||||||||||||||||||
Classification: | ||||||||||||||||||||||
Primary Classification:
|
|
Secondary Classification: |
|
Keywords:
| Sturm-Liouville problems; indefinite weight function; left-definiteness; existence of eigenvalues; inequalities for eigenvalues; dependence on parameters; | Review: | For a linear and regular differential equation of the second order the self-adjoint Sturm-Liouville problem is usually studied in the so called right-definite case (meaning that the right-hand side ``weight" w of the eigenvalues does not change sign). This means that we may work in a Hilbert space with the standard inner product. By analogy, whenever the ``weight" w is permitted to change sign, the resulting ``right-indefinite" problems have to be studied within a Krein space (with indefinite metric). Still, there exists a subset of the latter cases (called left-definite) characterized by the possibility of a return to the Hilbert space theory after a suitable change of the inner product. Such a trick proves extremely productive in the applied functional analysis - cf., e.g., F. G. Scholz et al in Annals of Physics 213, 74 - 101 (1992) in the context of the fermion-boson mappings, or A. Mostafazadeh in J. Math. Phys. 43, 2814 - 2816 (2002) in the pseudo-Hermitian, so called PT symmetric quantum mechanics. Its strict mathematical study in question paying detailed attention to ``the most elementary" Sturm-Liouville problem is extremely important, therefore. Its introductory parts clarify in which sense the left-definiteness means just a guarantee that all the eigenvalues remain real. The subsequent detailed study of eigenvalues reveals, when and how do they depend smoothly on the coefficient functions and on the boundary condition parameters, and when this dependence is monotonic and/or leads to some useful inequalities. The study, definitely, fills several unpleasant gaps in the available literature. Remarks to the editors: |
| |