Zentralblatt MATH - REVIEW SUBMISSION FORM |
Zentralblatt MATH
HOME
|
Name: | ||||||||||||||||||||
Miloslav Znojil | ||||||||||||||||||||
Reviewer number: | ||||||||||||||||||||
9689 | ||||||||||||||||||||
Email: | ||||||||||||||||||||
znojil@ujf.cas.cz | ||||||||||||||||||||
Item's zbl-Number: | ||||||||||||||||||||
DE 017 526 609 | ||||||||||||||||||||
Author(s): | ||||||||||||||||||||
Krukier, L. A.; Chikina, L. G.: | ||||||||||||||||||||
Shorttitle: | ||||||||||||||||||||
A two-cycle triangular-matrix iterative method for solving strongly asymmetric systems | ||||||||||||||||||||
Source: | ||||||||||||||||||||
Izv. Vyssh. Uchebn. Zaved., Mat. 2001, No. 5, 36 - 42 (2001). | ||||||||||||||||||||
Classification: | ||||||||||||||||||||
Primary Classification:
|
|
Secondary Classification: |
|
Keywords:
| convection-diffusion equation in two dimensions; five-point Runge Kutta method; predominantly skew-symmetric matrix; preconditioning using triangular matrices; iteration method with even and odd steps; | Review: | Non-homogeneous linear matrix equations with an almost skew-symmetric matrix are considered. Their study is motivated by the needs of hydrodynamics with predominant convection (and numerically illustrated, via five-point Runge Kutta, by the convection-diffusion equation in two dimensions). Their iterative treatment is based on an older method proposed by one of the authors (L. A. K.). Its novelty lies in the separation of even and odd iterations (= a special case of the so called cyclic methods) which proved able to economize up to 40 percent of computing time in practice. Formulation of the explicit convergence criteria and the estimates of the rate of convergence are given, and an optimalization of the choice of free parameters is discussed. Remarks to the editors: |
| |