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For Klein-Gordon equation a consistent physical interpretation of wave functions is
reviewed as based on a proper modification of the scalar product in Hilbert space. Bound
states are then studied in a deep-square-well model where spectrum is roughly equidis-
tant and where a fine-tuning of the levels is mediated by PT −symmetric interactions
(composed of imaginary delta functions) which mimic creation/annihilation processes.
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1 Klein-Gordon equation

1.1 σ3−pseudo-Hermitian Feshbach-Villars Hamiltonian

As long as the most common relativistic Klein-Gordon (KG) operators are partial
differential operators of the second order with respect to time, the time evolution
of the wave functions Ψ(KG)(x, t) must be studied together with their first time
derivatives i ∂t Ψ(KG)(x, t). After the routine Fourier transformation we often arrive
at the Feshbach-Villars (FV, [1]) non-Hermitian eigenvalue problem

Ĥ(FV ) |ψ〉 = E |ψ〉 , Ĥ(FV ) =
(

0 ĥ(KG)

1 0

)
(1)

where the two wave-function components [marked by the curly kets, viz., |D}
(=“down component”) and |U} (=“up component”)] form a doublet,

|ψ〉 =
( |U}
|D}

)
∈ H = H(c) ⊕H(c) .

For the description of the bound states in one dimension we choose H(c) = L2(IR)
and imagine that the two-by-two partitioning in (1) allows us to extract |U} =
E |D} and to replace our Klein-Gordon equation by its reduced, Schrödinger-like
equivalent form

ĥ(KG) |Dn} = εn |Dn}, |Dn} ∈ H(c), n = 1, 2, . . . (2)

with squared energy E2 abbreviated as ε and with the “large” Hilbert space H
of kets |ψ〉 reduced to the “smaller” Hilbert space H(c) of the curly-ket “down”
components |Dn} [2].
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1.2 Biorthogonal bases

The construction of the “right” eigenkets |Dn} in eq. (2) does not provide enough
information about ĥ(KG) itself, due to its asymmetry which makes [ĥ(KG)]† a dif-

ferent operator. The parallel Schrödinger-type problem
[
ĥ(KG)

]†
|Ln}} = κ2

n |Ln}}
generates, therefore, different eigenkets marked by the double curly ket symbol.

The latter sequence may be read as the left eigenvectors of our original operator
ĥ(KG). Its elements are related to the same (real) eigenvalues εn ≡ κ2

n so that we
have to keep the whole pair of the Schrödinger-like bound-state equations in mind,

ĥ(KG) |Dn} = κ2
n |Dn}, {{Ln| ĥ(KG) = κ2

n {{Ln|, n = 1, 2, . . . . (3)

It is well known that the set of the bras {{Ln| and kets |Dn} is bi-orthogonal [2],

{{Lm|Dn} = 0 for m 6= n,

and that it forms, usually, a basis in the infinite-dimensional Hilbert space H(c).
Thus, once we manage to evaluate all the non-vanishing overlaps {{Ln|Dn} ≡ %n

we may decompose the unit operator in H(c),

I(c) =
∞∑

n=1

|Dn} 1
%n
{{Ln| . (4)

Equally easily we derive the bi-orthogonal spectral representation of

ĥ(KG) =
∞∑

n=1

|Dn} κ2
n

%n
{{Ln| . (5)

The overlaps %n need not be all of the same sign.

2 Relativistic observables

2.1 Θ−quasi-Hermiticity

In the space H = H(c) ⊕H(c) of the eigenstates of H(FV ) we have to consider the
pair of conjugate equations

Ĥ(FV ) |n(±)〉 = ±κn |n(±)〉, 〈〈n(±)| Ĥ(FV ) = ±κn 〈〈n(±)| . (6)

Both the left and right eigenstates have the two-component structure,

|m(±)〉〉 =
( |Lm}}
±κm |Lm}}

)
, |n(±)〉 =

( ±κn |Dn}
|Dn}

)

and form the bi-orthogonal set in the “bigger” space H,

〈〈m(ν)|n(ν′)〉 = δmnδνν′ · µ(ν)
m , µ(±)

m = ±2κm %m , ν, ν′ = ±1 .
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It is expected to be complete,

I =
∑

τ=±1

∞∑
n=1

|n(τ)〉 1

µ
(τ)
n

〈〈n(τ)| , H = H(c) ⊕H(c) . (7)

and useful,

H(FV ) =
∑

τ=±1

∞∑
n=1

|n(τ)〉 τ κn

µ
(τ)
n

〈〈n(τ)| =
∞∑

n=1

(|n(+)〉 〈〈n(+)|) +
(|n(−)〉 〈〈n(−)|)

2 %n
.

Let us now assume that at a given Ĥ(FV ), equation
[
Ĥ(FV )

]†
= η Ĥ(FV ) η−1 (8)

possesses a positive and Hermitian solution η+ = Θ > 0. Such an operator may
play the role of metric and induces the following specific scalar product in H,

(|ψ1〉 ¯ |ψ2〉) = 〈ψ1|Θ |ψ2〉 = 〈ψ1|ψ2〉(physical), |ψ1〉 ∈ H, |ψ2〉 ∈ H . (9)

This product generates the norm, ||ψ|| =
√〈ψ|ψ〉(physical). In terms of the later

product and metric we may call all the operators A with the property A† = Θ A Θ−1

quasi-Hermitian and treat them as observables (see [3] for a deeper outline of some
more sophisticated mathematical details). Indeed, we have

(|ψ1〉 ¯ |Aψ2〉) ≡ (|Aψ1〉 ¯ |ψ2〉) (10)

so that the probabilistic expectation values 〈ψ|A |ψ〉(physical) are mathematically
unambigously defined.

2.2 Explicit constructions of the metric Θ

We have seen that in the language of pure mathematics, our present innovation
admitting the non-Hermiticity ĥ(KG) 6= [ĥ(KG)]† = P ĥ(KG) P cannot lead to any
real complications. Now it remains for us to assign a consistent physical meaning
to all our relativistic bound states of section 3. In the other words, once we have
solved the underlying auxiliary reduced eq. (2), we still have to select or construct
a suitable physical metric Θ connected with the Feshbach-Villars Hamiltonians
Ĥ(FV ) by the metric-operator definition (8).

Within the framework of our present class of models, the construction of the
necessary (family of) metrics Θ is straightforward. In the first step we have to
recollect that our trigonometric formulae (15) for the vectors |Dn} define, in closed
form, all the necessary Hilbert-space vectors |n(±)〉 as well as, mutatis mutandis,
all their partners |n(±)〉〉 (obtainable via the replacement of our auxiliary ĥ(KG) by
its Hermitian conjugate [ĥ(KG)]† which is trivial).

In the second step we find out that the evaluation of the overlaps %n remains
feasible and requires merely some symbolic-manipulation programming in more
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complicated cases. This follows from the fact that all our wave functions |Dn} and
|Dn}} are piecewise trigonometric.

In the final step we may employ an ansatz

Θ =
∑

τ,τ ′=±1

∞∑
m,n=1

|n(τ)〉〉M (ττ ′)
nm 〈〈m(τ ′)| ,

the backward insertion of which in (8) gives the condition

τ κn M (ττ ′)
nm = M (ττ ′)

nm τ ′κm

with the set of solutions M
(ττ ′)
nm = ω

(τ)
n δnm δ(ττ ′) numbered by the free parameters

~ω(±). The Hermiticity and positivity constraints restrict the freedom of the choice
of both the optional sequences ~ω(±) to the real and positive values, ω

(±)
n > 0. Vice

versa, any choice of the latter two sequences defines an eligible operator of the
metric

Θ = Θ~ω(±) =
∑

τ=±1

∞∑
n=1

|n(τ)〉〉ω(τ)
n 〈〈n(τ)| . (11)

Its inverse

Θ−1 =
∑

τ=±1

∞∑
n=1

|n(τ)〉 1

ω
(τ)
n |µ(τ)

n | 2
〈n(τ)| (12)

is similar in its form. We may conclude that in terms of the metric Θ, our bound-
state wave functions constructed in section 3 acquire the standard probabilistic
interpretation.

3 The models with complex delta-interactions

Potentials V (x) will be complex (otherwise we would return to θ = I) while the
energies are expected real. Our requirement of the PT −symmetry

T ĥ(KG) T ≡
[
− d2

dx2
+ m2

0 + V (x)
]†

= P
[
− d2

dx2
+ m2

0 + V (x)
]
P (13)

demands that while the coordinate x ∈ IR is real, the real and imaginary parts
of the scalar potential are spatially symmetric and antisymmetric, respectively,
V (x) = V ∗(−x). Further possible generalizations (say, with complex contours of
x in the relativistic case, etc) will not be discussed here. Still, the class of models
compatible with eq. (13) remains fairly broad. In this paper we shall restrict it
significantly in a way inspired by the success of several non-relativistic studies of
PT −symmetric models with point interactions [4].

Making an explicit choice among all the eligible point-interaction candidates
V (x) we shall follow the encouraging experience which we made in our paper [5]
where we combined the infinitely deep square-well real part of the potential with
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the delta-function formula for its imaginary part. Thus, once we put V (x) = ∞ for
all x /∈ (−1, 1) we shall postulate here that

V (x) =
L∑

`=1

[i ξ` δ (x− a`)− i ξ` δ (x + a`)] , x ∈ (−1, 1) (14)

at real couplings ξ` and ordered points 0 < a1 < a2 < . . . < aL−1 < aL < 1.

3.1 Wave functions

The key advantage of our choice of V (x) in eq. (14) is that the PT −symmetrically
normalized coordinate representation ψ(x) = ψ∗(−x) of the ket |D} in eq. (2)
remains piecewise trigonometric. At each real and positive bound-state energy ε =
κ2 we shall have

ψ(x) =





ψ
(L)
L (x) = (αL − i βL) sin κ(1 + x), x ∈ (−1,−aL),

ψ
(`)
L (x) = (α` − i β`) sin κ(a`+1 + x) + (γ` − i δ`) cos κ(a`+1 + x),

x ∈ (−a`+1,−a`),
ψ

(0)
C (x) = µ cos κx + i ν sin κx, x ∈ (−a1, a1),

ψ
(`)
R (x) = (α` + i β`) sin κ(a`+1 − x) + (γ` + i δ`) cos κ(a`+1 − x),

x ∈ (a`, a`+1),
ψ

(L)
R (x) = (αL + i βL) sin κ(1− x), x ∈ (aL, 1), 1 ≤ ` < L.

(15)
This formula simplifies not only the continuity conditions

ψ
(`−1)
L (−a`) = ψ

(`)
L (−a`), ` = L,L − 1, . . . , 2,

ψ
(0)
C (−a1) = ψ

(1)
L (−a1), ψ

(1)
R (a1) = ψ

(0)
C (a1),

ψ
(`+1)
R (a`+1) = ψ

(`)
R (a`+1), ` = 1, 2, . . . ,L − 1,

(16)

but also the differentiation,

1
κ

ψ′(x) =





(αL − i βL) cos κ(1 + x), x ∈ (−1,−aL),
(α` − i β`) cos κ(a`+1 + x)− (γ` − i δ`) sin κ(a`+1 + x),

x ∈ (−a`+1,−a`),
−µ sin κx + i ν cosκx, x ∈ (−a1, a1),
−(α` + i β`) cos κ(a`+1 − x) + (γ` + i δ`) sin κ(a`+1 − x),

x ∈ (a`, a`+1),
−(αL + i βL) cos κ(1− x), x ∈ (aL, 1), ` = 1, 2, . . . ,L − 1 .

(17)
All this enters the definition of the action of the delta functions,

[
ψ

(`−1)
L (−a`)

]′
−

[
ψ

(`)
L (−a`)

]′
= −iξ` ψ

(`)
L (−a`), ` = L,L − 1, . . . , 2,[

ψ
(0)
C (−a1)

]′
−

[
ψ

(1)
L (−a1)

]′
= −iξ1 ψ

(0)
C (−a1),[

ψ
(1)
R (a1)

]′
−

[
ψ

(0)
C (a1)

]′
= iξ1 ψ

(0)
C (a1),[

ψ
(`+1)
R (a`+1)

]′
−

[
ψ

(`)
R (a`+1)

]′
= iξ`+1 ψ

(`)
R (a`+1), ` = 1, 2, . . . ,L − 1,

(18)
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After the insertion of the ansatzs (15) and (17), the set of formulae (16) and (18)
may be read as a homogeneous linear algebraic system of 4L equations for the 4L
unknown wave-function coefficients αL, βL, . . . , ν. The secular determinant D(κ)
of this system must vanish so that the not too complicated transcendental equation

D(κ) = 0 (19)

determines finally the set of the bound-state roots κ = κn at n = 1, 2, . . ..

3.2 Energies at the simplest choice of L = 1

Let us pick up L = 1 and check how the method works. Firstly, potential (14)
degenerates to the most elementary double-well model with the single coupling
ξ1 = ξ and one displacement a1 = a. Out of the related eight real constraints (16)
and (18) only four are independent and define the four real coefficients α1 = α,
β1 = β and µ and ν as an eigenvector of a four-by-four matrix with the secular
determinant [6]

D(κ) = −1
2

{
sin 2κ +

ξ2

κ2
sin 2κa · sin2[κ(1− a)]

}
. (20)

Numerically, the first term would give us the well-known square-well spectrum at
ξ = 0, the completeness of which is controlled by the Sturm-Liouville oscillation
theory [7]. As long as all the roots κn = κn(ξ) are smooth and real functions of ξ at
the smallest couplings, κn(ξ) ≈ nπ/2+O(ξ2/n), our explicit construction confirms
the general mathematical prediction [8] that the influence of the non-Hermiticity
will be most pronounced at the lowest part of the spectrum.

3.3 The next choice of L = 2

On the quadruple-well potential (14) with L = 2 we may verify a smoothness of
its degeneracy to the more elementary double well of previous subsection. Working
now with the two couplings ξ1 and ξ2 we may shorten our notation for the points of
interactions (a1 = a, a2 = b), drop the two redundant subscripts (γ1 = γ, δ1 = δ)
and evaluate the eight-dimensional matrix of the system for our eight coefficients in
eq. (15). We reveal that the elimination of some of them is trivial [γ = α2 sin κ(1−b),
δ = β2 sin κ(1 − b)] or at least sufficiently easy [α1 = α1(α2, β2), β1 = β1(α2, β2)].
We end up with a four-by-four matrix problem, simplified further by trigonometric
identities. We get the secular determinant

D(κ) = D(0)(κ) +D(ξ1)(κ) +D(ξ2)(κ) +D(ξ1ξ2)(κ) (21)

where

D(0)(κ) = −1
2

sin 2κ , D(ξj)(κ) = − ξ2
j

2κ2
sin 2κaj · sin2[κ(1− aj)], j = 1, 2
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while

D(ξ1ξ2)(κ) = −
{

ξ1ξ2

κ2
sin 2κa +

ξ2
1ξ2

2

κ4
sin2[κ(b− a)]

}
sin2[κ(1− b)] .

The derivation of this secular determinant remains feasible without symbolic ma-
nipulations on a computer. The function itself correctly degenerates to the previous
L = 1 formula in both the independent limits of ξ1 → 0 and ξ2 → 0.

3.4 Simplifications at the rational aj

Let us return to the secular eq. (20) with L = 1 and choose a = 1/2 [6]. This leads
to a factorization of D(κ) and to the pair of the eigenvalue conditions

cos κ2m−1 =
ξ2

ξ2 − 4κ2
2m−1

, sin κ2m = 0, m = 1, 2, . . . (22)

with the second series of equations being exactly solvable, κ2m = mπ.
At the next choice of a = 1/3 we factorize eq. (20) in the similar manner and

get the series of the ξ−dependent roots specified by the implicit definitions

cos
4
3
κp =

ξ2 + 2κ2
p

ξ2 − 4κ2
p

, p = 1, 2, 4, 5, 7, 8, 10, . . . (23)

complemented by the closed formula for all the skipped roots of the factor sin 2κ/3
which remain ξ−independent and read κ3m = 3mπ/2 with m = 1, 2, . . .. The
regularity of such a pattern of the ξ−independent roots is easily prolonged to the
decreasing sequence of a with κ4m = 2mπ at a = 1/4 and all m = 1, 2, . . ., etc.

The less elementary composite choice of a = 2/3 may be observed to give the
same factor as at a = 1/3 and, hence, the same ξ−independent series of the roots
κ3m = 3mπ/2 with m = 1, 2, . . .. The implicit formula for the remaining roots
is a slightly more complicated quadratic equation in the trigonometric unknown
X = cos 2κ/3, (

4 κ2 − ξ2
)

X2 + ξ2 X − κ2 = 0 . (24)

Its trigonometric part X may be eliminated in the form resembling eq. (23).
One of the important consequences of the existence of the elementary formulae

for the rational a is that they allow us to perform an elementary analysis of the
qualitative features of the n−th root κn during the growth of the strength ξ of the
non-Hermiticity. During such an analysis one discovers that these levels are either
“robust” (marked by a superscript, κ

(R)
n , and remaining real for all ξ) or “fragile”

(such a κ
(F )
n will merge with another κ

(F )
m at a “critical” ξ

(C)
n,m while the pair will

complexify beyind this “exceptional” [9] point). For illustration let us display the
regularity of the pattern in the simplest spectra,

κ
(F )
1 , κ

(R)
2 , κ

(F )
3 , κ

(R)
4 , κ

(F )
5 , κ

(R)
6 , . . . , a = 1/2
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κ
(F )
1 , κ

(F )
2 , κ

(R)
3 , κ

(F )
4 , κ

(F )
5 , κ

(R)
6 , . . . , a = 1/3

κ
(F )
1 , κ

(F )
2 , κ

(R)
3 , κ

(R)
4 , κ

(R)
5 , κ

(F )
6 , κ

(F )
7 , κ

(R)
8 , κ

(R)
9 , κ

(R)
10 , κ

(F )
11 , . . . , a = 1/4

etc. An extension of these observations to the further few not too complicated
rational distances a is rather routine and may be left to the interested reader.

4 Summary: Physical interpretation

As we already noticed, our reduced differential eq. (2) is formally similar to
the standard Schrödinger equation. In particular, the role of the nonrelativistic
Hamiltonian is played by our auxiliary operator ĥ(KG). At the same time, as long as
ĥ(KG) acts on the mere component-subspaceH(c), several subtle differences between
the physical meaning of ĥ(KG) in the non-relativistic and relativistic Quantum
Mechanics must be underlined.

We may conclude that whenever we decide to treat H as a Hilbert space of
states endowed with the particular metric Θ, all the operators A which prove quasi-
Hermitian can be interpreted as observables.
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