Zentralblatt MATH - REVIEW SUBMISSION FORM |
Zentralblatt MATH
HOME
|
Name: | ||||||||||||||||||||
Miloslav Znojil | ||||||||||||||||||||
Reviewer number: | ||||||||||||||||||||
9589 | ||||||||||||||||||||
Email: | ||||||||||||||||||||
znojil@ujf.cas.cz | ||||||||||||||||||||
Item's zbl-Number: | ||||||||||||||||||||
DE 016 949 057 | ||||||||||||||||||||
Author(s): | ||||||||||||||||||||
Ishihara, K.: | ||||||||||||||||||||
Shorttitle: | ||||||||||||||||||||
Iterative methods for eigenvalue problems with normalization condition for a general complex matrix | ||||||||||||||||||||
Source: | ||||||||||||||||||||
Computing [Suppl] 16, 105 - 118 (2001) (volume Topics in Numerical Analysis dedicated to T. Yamamoto). Wien: Springer, G. Alefeld et al (ed). | ||||||||||||||||||||
Classification: | ||||||||||||||||||||
Primary Classification:
|
|
Secondary Classification: |
|
Keywords:
| complex matrix; eigenvalue problem; Newton and Gauss-Newton interations; nonlinearity causing normalization to one; damped versions of the method; line search algorithm; convergence; | Review: | Once you normalize a complex eigenvector z to one, your | normalization condition is (of course) non-analytic (and, in particular, non-differentiable) function of the n components of z so that the Newton's iteration method must be used with due care. The details are given: After the formulation and proofs of convergence of the proposed Generalized Damped Newton (and Gauss-Newton) Method the author demonstrates the merits of his/her approach on five standard numerical examples. Remarks to the editors: |
| |