Zentralblatt MATH - REVIEW SUBMISSION FORM |
Zentralblatt MATH
HOME
|
Name: | ||||||||||||||||||||||||
Miloslav Znojil | ||||||||||||||||||||||||
Reviewer number: | ||||||||||||||||||||||||
9689 | ||||||||||||||||||||||||
Email: | ||||||||||||||||||||||||
znojil@ujf.cas.cz | ||||||||||||||||||||||||
Item's zbl-Number: | ||||||||||||||||||||||||
DE 0165 24 655 | ||||||||||||||||||||||||
Author(s): | ||||||||||||||||||||||||
Gohberg, I.; Kaashoek, M. A.; Sakhnovich, A. L.: | ||||||||||||||||||||||||
Shorttitle: | ||||||||||||||||||||||||
Bound states of a canconical system with a pseudo-exponential potential | ||||||||||||||||||||||||
Source: | ||||||||||||||||||||||||
Integral Equations Oper. Theory 40, No. 3, 268 - 277 (2001). | ||||||||||||||||||||||||
Classification: | ||||||||||||||||||||||||
Primary Classification:
|
| Secondary Classification: |
|
Keywords:
| canonical systems; pseudo-exponential potential; pseudo-Dirac self-adjoint operator; all bound states in closed form; half-line and full-line axis of coordinates; | Review: | Non-relativistic quantum mechanics attracts attention to the so called bound state solutions of the ordinary linear differential equations of the second order. Many of these solutions may be obtained in closed form, and also a relativistic counterpart of the bound state problem remains often solvable. On this background, the paper returns to some older results (by the same authors, quoted as refs. [5] and [6]) which proposed and studied a certain matrix, m-dimensional generalization of the equations of quantum mechanics containing the so called pseudo-exponential matrix potentials. Basically, the paper offers a new theorem on the bound state solutions (in both its half-line and full-line versions) making the old results (formulated in the language of spectral function) more explicit, especially in the questions concerning the multiplicity of the eigenvalues or the explicit form of the eigenfunctions. Remarks to the editors: |
| |