Zentralblatt MATH - REVIEW SUBMISSION FORM |
Zentralblatt MATH
HOME
|
Name: | ||||||||||||||||
Miloslav Znojil | ||||||||||||||||
Reviewer number: | ||||||||||||||||
9689 | ||||||||||||||||
Email: | ||||||||||||||||
znojil@ujf.cas.cz | ||||||||||||||||
Item's zbl-Number: | ||||||||||||||||
DE016061301 | ||||||||||||||||
Author(s): | ||||||||||||||||
Gan, C. K.; Haynes, P. D.; Payne, M. C.: | ||||||||||||||||
Shorttitle: | ||||||||||||||||
Preconditioned conjugate gradient method for the sparse generalized eigenvalue problem | ||||||||||||||||
Source: | ||||||||||||||||
Comput. Phys. Commun. 134, No. 1, 33-40 (2001). | ||||||||||||||||
Classification: | ||||||||||||||||
Primary Classification:
|
| Secondary Classification: |
|
Keywords:
| conjugate gradient method; generalized eigenvalue problem; preconditioning; the first few lowest eigensolutions;, application to electronic structure; chlorine molecule; silicon crystal; density functional approach; localised basis set | Review: | Paper inspired by the needs of solid state physics (the lowest few energies and wave functions of the chlorine molecule and of a 64-atomic silicon crystal are calculated for illustration). Its physical background is the density-functional theory represented in localized (non-orthogonal) basis. The algorithm offered is an iterative one, making an ample use of the sparsity of the matrices in question (first of all, via a one-parametric family of the kinetic-energy preconditionings). Empirically, the convergence appears to be linear. Remarks to the editors: |
| |