Zentralblatt MATH - REVIEW SUBMISSION FORM |
Zentralblatt MATH
HOME
|
Name: | ||||||||||||||||||||
Miloslav Znojil | ||||||||||||||||||||
Reviewer number: | ||||||||||||||||||||
9689 | ||||||||||||||||||||
Email: | ||||||||||||||||||||
znojil@ujf.cas.cz | ||||||||||||||||||||
Item's zbl-Number: | ||||||||||||||||||||
DE 017 400 966 | ||||||||||||||||||||
Author(s): | ||||||||||||||||||||
Fan, Hongyi | ||||||||||||||||||||
Shorttitle: | ||||||||||||||||||||
Bose operator Hamiltonian for rotating electric dipole | ||||||||||||||||||||
Source: | ||||||||||||||||||||
Int. J. Mod. Phys. A 17, No. 1, 45 - 50 (2002). | ||||||||||||||||||||
Classification: | ||||||||||||||||||||
Primary Classification:
|
|
Secondary Classification: |
|
Keywords:
| solvable quantum model; a Hamiltonian's nonlinear representation in terms of the two bosonic creation and annihilation operators; angular observables; Ehrenfest theorem; correspondence principle | Review: | Author studies, in a clear pedagogical manner, a Hamiltonian H | defined in terms of the two bosonic creation/annihilation operators in a way inspired by Hradil (ref. [6]). In detail, the action of H on the specific coherent-state-like states of his/her previous work is very transparent and supports its rotating-dipole interpretation in an external electric field. The model proves solvable in Heisenberg representation giving the zero-point angular momentum in the evolution equation for angular velocity and/or angular acceleration. This trivializes the related Ehrenfest theorems and leads to the correct uncertainty relations for angular variables. Remarks to the editors: |
| |