| Zentralblatt MATH - REVIEW SUBMISSION FORM |
Zentralblatt MATH
HOME
|
| Name: | ||||||||||||||||
| Miloslav Znojil | ||||||||||||||||
| Reviewer number: | ||||||||||||||||
| 9689 | ||||||||||||||||
| Email: | ||||||||||||||||
| znojil@ujf.cas.cz | ||||||||||||||||
| Item's zbl-Number: | ||||||||||||||||
| DE 017 270 039 | ||||||||||||||||
| Author(s): | ||||||||||||||||
| Dong, Shi-Hai | ||||||||||||||||
| Shorttitle: | ||||||||||||||||
| Quantum monodromy in the spectrum of Schroedinger equation with a decadic potential | ||||||||||||||||
| Source: | ||||||||||||||||
| Int. J. Theor. Phys. 41, No. 1, 89 - 99 (2002). | ||||||||||||||||
| Classification: | ||||||||||||||||
Primary Classification:
|
| Secondary Classification: |
|
Keywords:
| Schroedinger eqatuion in two dimensions; spectrum of energies; numerical computation; lattice with dislocations; | Review: | A part of a series, a very short note where Schroedinger equation with three sample potentials of a double-, triple- or quadruple-well shape is solved, numerically, in two dimensions. The spectra of bound states are displayed, in three pictures, as forming lattices with dislocations explained as a quantum manifestation of essential singularity in the classical action integral. Giving no details, the possible formal connection of such a parallel-transport structure of the lattice of energies with the monodromy-matrix interpretation of periodic maps is mentioned. Remarks to the editors: |
| | |||||||