Zentralblatt MATH - REVIEW SUBMISSION FORM |
Zentralblatt MATH
HOME
|
Name: | ||||||||||||||||||||
Znojil, Miloslav | ||||||||||||||||||||
Reviewer number: | ||||||||||||||||||||
9689 | ||||||||||||||||||||
Email: | ||||||||||||||||||||
znojil@ujf.cas.cz | ||||||||||||||||||||
Item's zbl-Number: | ||||||||||||||||||||
DE 015 568 717 | ||||||||||||||||||||
Author(s): | ||||||||||||||||||||
Coskun, Haskiz; Harris, B. J. | ||||||||||||||||||||
Shorttitle: | ||||||||||||||||||||
Estimates for the eigenvalues for Hill's equation | ||||||||||||||||||||
Source: | ||||||||||||||||||||
Proc. R. Soc. Edinb., Sect. A, Math. 130, No. 5, 991-998 (2000) | ||||||||||||||||||||
Classification: | ||||||||||||||||||||
Primary Classification:
|
| Secondary Classification: |
|
Keywords:
| Hill's equation, spectral asymptotics, periodic and semi-periodic boundary conditions, non-smooth potential, Sturm-Liouville problems with continuous spectra | Review: | Schroedinger equation on a finite interval (with the standard periodic or anti-periodic boundary conditions) is of current use in condensed matter physics etc. Its spectral analysis is well developed. The paper (based on the first author's PhD dissertation) contributes by the derivation of the asymptotic form of the eigenvalues without smoothness conditions imposed upon the (integrable) potential. The method is based on the Hochstadt's trick (re-arrangement of boundary conditions to the Dirichlet ones, somewhere within the interval) and theorem (the new eigenvalues are bracketed by the old ones). In this manner, the authors vary the Hochstad's point and minimize and maximize his eigenvalues (obtained by the co-author's Riccati-equation technique). After fairly complicated calculations (with full details available in the corresponding PhD thesis) they arrive at the known estimates, in this way having got rid of the redundant smoothness assumptions. Remarks to the editors: |
| |