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Abstract

After a thorough numerical analysis of the quantized Barbanis’ system (=
two harmonic oscillators coupled by Vint =

√
g x y2), A. Nananyakkara [Phys.

Lett. A 334 (2005) 144] conjectured that there exist no true level crossings
(= degeneracies), for the first 150 energy levels at least. Here we report
an opposite observation. A systematic improvement of the precision of the
calculations forces us to conclude that in the system in question one finds no
avoided crossings at all. Our twin explanation of the discrepancy is based on
the false convergence of the variational method and on an unexpected (and
unaccounted) degeneracy of the unperturbed energies in loc. cit.
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1 Introduction

The coupling-dependence of the energies is one of the most interesting and
important characteristics of any quantized system. In a numerical experiment
paying attention to the complex version of the so called Barbanis’ potential

V (B)(x) =
1

2
(ω2

x x2 + ω2
y y2) +

√
g x y2, (1)

Asiri Nanayakkara [1] conjectured recently that at certain sufficiently high
excitations n ≥ n0, the sudden emergence of the irregularities characterized
by the very large second differences 4n = En(f + δ) − 2En(f) + En(f − δ)
(cf. Fig. 3, loc. cit.) might be interpreted as a clear manifestation of an
onset of a quantum analogue of the classical chaos even in the manifestly
non-Hermitian regime with the negative g.

He attributed all these anomalously large differences 4n to the occur-
rence of the avoided level crossings and concluded that there appears to be
a more or less complete analogy between the Hermitian and non-Hermitian
systems. He supported such a conjecture by the (harmonic-oscillator) large-
basis variational calculations (cf. Fig. 4, loc. cit.).

In an independent numerical test he tried to re-confirm his observations
by the (non-degenerate) high-order perturbation calculations (cf. Fig. 5,
loc. cit.). Unfortunately, this test only proved successful for the low-lying
part of the spectrum. Thus, he finally formulated his conclusion that certain
predictions of his perturbation calculation “need not be the same” (as the ex-
act results) “when applying non-degenerate perturbation theory to irregular
states”.

A slightly puzzling form of the later conclusion inspired us to return to
the model (1) and to re-analyze a few separate technicalities supporting the
ambitious conjectures of ref. [1].

The presentation of our results starts in Sec. 2 where only the purely
imaginary interaction potential in eq. (1) is considered. We re-analyze there
the Nanayakkara’s assertion that “no level crossings were observed for first
150 eigenstates”. Our numerical results lead us to an opposite conjecture,
viz., that all the energy levels do degenerate and cross exactly.

The most straightforward and immediate foundation of our alternative
conjecture lies in our more consequent and systematic control of the numeri-
cal errors. It reveals that the size of the apparent observation of the avoided
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Figure 1: Energy crossings for the perturbed circular (left) and elliptic (right)
models (1).

level crossing depends and changes in fact with the rounding errors (cf. Sec.
2 for more details).

In Sec. 3 we turn attention to the positive parameters g > 0 which lead
to the non-separable interaction term Vint =

√
g x y2 with the real strength√

g. Rigorously we prove that the quantum Hamiltonians associated with
the real version of the potential (1) are ill defined. From the physical point
of view this is an important observation, invalidating all the g > 0 results of
ref. [1].

In the last part of our comment we return to the Nanayakkara’s pertur-
bative analysis of the model (1) where, at a “random” choice of the asym-
metric, elliptic unperturbed well with ωx = 0.7 and ωy = 1.3 he assumed
a non-degeneracy of the unperturbed spectrum. This particular point in
fact attracted us to the problem since the very explicit Fig. 5b of loc. cit.
clearly shows that the unperturbed levels in question appear to be “almost
degenerate”.

In Sec. 4 our hypothesis of their full degeneracy will be confirmed. Our
exhaustive analysis of the degeneracy problem remains straightforward and
implies that the Nanayakkara’s non-degenerate Rayleigh-Schrödinger pertur-
bation expansions happen to be, quite unfortunately, entirely inapplicable in
his particular numerical illustration. As a consequence, also all the related
puzzling discrepancies between his perturbative and variational results (as
discussed in the summary of his work) become clarified in an elementary
manner.

2 Unavoided level crossings at g < 0

Fig. 1 shows two examples of our numerical results for both circular (ωx =
ωy = 1) and elliptic (ωx = 0.7, ωy = 1.3) cases. We employed the collocation
spectral method [3], [4]. We checked the stability of our results and proceeded
with very fine step in g. Comparing our Fig. 1 and the results presented
on Fig. 4b and Fig. 5b in [1] we find the main difference in the way of the
levels cross. Within the best precision we are able to control, the energy lines
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Figure 2: Contour plots of real and imaginary parts of the 72nd and 73rd
wave functions of (1) for ωx = 0.7, ωy = 1.3, and g = −0.002.

intersect in all instances we investigated. This is, however, at variance with
the conclusions of [1].

In order to support our conclusions we visualized the corresponding wave
functions. Fig. 2 may help to understand the situation. It is related to the
Fig. 1b (i.e. ωx = 0.7, ωy = 1.3). The levels that cross there still preserve
the patterns determined by the wave functions of the unperturbed elliptic
oscillator. We discuss levels Nr. 72 and 73, whose numbers are (0, 8) and
(15, 0), respectively. Both of them show a substantionally one–dimensional
dominance. As the g approaches the critical value gc = −0.0025297676
the shape of the wave functions changes smoothly keeping the character
of pattern unchanged (e.g. the nodal curves are slightly deformed but no
new structure appears). Passing through gc brings no substantional change,
however, the order of these two levels is swapped. It strongly supports our
conjecture based on numerical “evidence” that the crossings are genuine, i.e.
that the levels are degenerated.

A more detailed study of the crossings is left to a separate paper.

3 The physical inconsistency of quantization

at g > 0

Let us turn attention to the quantum Barbanis model with the apparently
“physical” real couplings h =

√
g. The differential map

f −→ Tf = −1

2
(
∂2f

∂x2
+

∂2f

∂y2
) +

1

2
(ω2

x x2 + ω2
y y2)f + hx y2f (2)

acting on Schwartz space S(R2) defines a self-adjoint operator which maps
S into S [2]. For positive h > 0 it is an unbounded operator with spectrum
not bounded below. In order to see this we chose a test function from S,

ψ0(x, y) :=

√
2

π
e−x2−y2
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and complement it by the family of the shifted test functions

ψn(x, y) := ψ0(x− n, y − n),

where n ∈ Z. Clearly ‖ψn‖ = ‖ψ0‖ = 1.
Now, let us suppose that the norm of the operator (2), i.e., the value

T := sup(‖Tf‖; ‖f‖ = 1) is finite. It is straightforward to find ‖Tψn‖ by
direct evaluation. The result is a square root of a polynomial of the sixth
degree

‖Tψn‖ =
√

P6(n), . . . , P6(n) = h2n6 + h(ω2
x + ω2

y)n
5 + · · · .

As long as we can always chose n > 0 sufficiently large to make ‖Tψn‖ > T ,
the operator (2) cannot be bounded.

In order to assess the spectrum from below we evaluate (ψn, Tψn) choosing
n < 0. We arrive at another polynomial

(ψn, Tψn) = Q3(n) = hn3 +
1

2
(ω2

x + ω2
y)n

2 + · · · .

We see that the spectrum cannot be bounded below, because the leading
term is negative so that we can always get a value lower than any bound.

A few remarks may be added. Firstly, at any not too large real and,
say, positive value of the Barbanis’ parameter h in eq. (1) the shape of the
potential V (x, y) is easily visualized as a mere deformation of the circular
(at ωx = ωy) or elliptic (at ωx 6= ωy) unperturbed (i.e., h = 0) harmonic-
oscillator well in the x − y plane. For the generic h > 0, this deformation
remains inessential at all the sufficiently negative coordinates x < 0. In
contrast, in the half-plane of x > 0 the confining character of the h = 0
well proves discontinuously changed at an arbitrarily small non-zero h > 0.
Indeed, once we introduce a real scaling parameter % = 1/h1/5 and re-scale
the coordinates in the real Barbanis Hamiltonian H(RB) we get

H(RB) ==
1

%2
Ĥ, Ĥ = − ∂2

∂x2
− ∂2

∂y2
+ ω̂2

x x2 + ω̂2
y y2 − x y2 (3)

where ω̂x = ωx%
2 and ω̂y = ωy%

2. We may see that in the re-scaled model
the potential remains safely confining, in the y−direction, at any negative
z = x − ω2

y < 0. On the boundary of this half-plane our potential remains
constant along the z = 0 line. Finally, at all the positive z = x − ω2

y > 0
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it acquires, in the y−direction, a clearly deconfining shape of downwards-
oriented parabolas.

All our observations invalidate the applicability of both the standard per-
turbation recipes and/or of the variational techniques using functions cen-
tered around the origin. In the light of this argument, all the related nu-
merical results of ref. [1] (cf., e.g., both the right halves of the graphs in
Fig. 5, loc. cit.) are just artifacts. One should note that their apparent
convergence is no paradox as it remains fully understood as compatible with
both the divergent asymptotic-series character of the perturbation series as
well as with the false convergence of the corresponding alternative variational
energy estimates.

One should add that a suitable, phenomenologically motivated “regular-
ization” of our Hamiltonian, say, by a spatial cut-off seems necessary. Un-
fortunately, a possible mathematical foundation as well as physical meaning
of such a regularization remain unclear. All its tentative choices look equally
artificial and leave the spectrum very strongly dependent on the form of the
cut-off.

4 Perturbation theory for Barbanis’ Hamil-

tonians

In the domain of small couplings g ≈ 0 the first few orders of perturba-
tion theory are often credited as offering a comparably reliable guide to the
coupling-dependence of the low-lying approximate eigenvalues. In this con-
text the author of ref. [1] chooses an apparently standard procedure. In
detail,

(a) he assumes that the spectrum of the model (1) with a “random” choice
of ωx = 7/10 and ωy = 13/10 is non-degenerate for the quadruplet of the
“randomly” chosen sample of levels Nr. 71, 72, 73 and 74;

(b) he constructs the non-degenerate Rayleigh-Schrödinger perturbation
series and picks up its 15th-order truncation as a “sufficiently high order”
candidate for for his empirical “sufficiently exact” and plausible closed energy
formula;

(c) he employs, in parallel, a variational basis of as many as 2500 lowest
harmonic-oscillator states. Such a basis gives the energies which, numerically,
appear to converge up to four or five decimal places and seem to confirm the
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parturbation results in the regime of the very small couplings.
Unfortunately, in spite of all the appearances, all these precautions proved

insufficient. Indeed, in the “unperturbed” limit of the vanishing couplings,
the quadruplet of the energy levels studied in ref. [1] happens to be composed
of the two doubly degenerate doublets.

Our latter statement explains a number of “puzzles” encountered in [1].
It is also very easy to prove. Indeed, in the unperturbed g = 0 harmonic-
oscillator system of ref. [1] with ωx/ωy = 7/13 and with the energies

En,N ∼ 7n + 13N, n, N = 0, 1, . . . (4)

we may order the energy levels in accord with Table 1. No degeneracy is
encountered within its limits so that the items E0,N = 13N represent the
K−th energy levels with K = N(N + 1), followed by the next N values of
E2j,N−j = 13N + j and j = 1, 2, . . . , N . Then one has to jump to the L− th
energy level E1,N = 13N + 7 [with L = (N + 1)2] followed by the N−plet
E2j+1,N−j = 13N + 7 + j and j = 1, 2, . . . , N .

Obviously, the degeneracies occur whenever 7n + 13N = 7n′ + 13N ′, i.e.,
whenever n − n′ = 13k while N ′ − N = 7k at some k = 1, 2, . . .. Thus,
the first ones with k = 1 appear at n′ = 0, n = 13, N = 0 and N ′ = 7
(giving E13,0 = E0,7 = 91 and the coincidence of the 55th and 56th levels)
and at n′ = 1, n = 14, N = 0 and N ′ = 7 (giving E14,0 = E1,7 = 98 and the
coincidence of the 63rd and 64th levels).

It is easy to reveal the first deviations from the above-described order-
ing scheme at the 70th and 71st levels which form the degenerate doublet
E13,1 = E0,8 = 104. The next pair of the 72nd and 73rd energy levels forms
another degenerate doublet with E15,0 = E2,7 = 105. Along these lines it is
straightforward to discover the other two degenerate energy doublets with
E14,1 = E1,8 = 111 and E16,0 = E3,7 = 112, etc.

For our present purposes the pairwise degeneracy of the levels Nr. 70 -
73 is precisely what we see in Fig. 5b of ref. [1] (obtained by the variational
diagonalization method and using a numbering shifted by one). In similar
situations, the non-degenerate version of the textbook Rayleigh-Schrödinger
perturbation theory cannot work. This is seen in the complementary Fig.
5a, loc. cit., the disagreement of which with Fig. 5a as formulated in the
concise summary of ref. [1] just reflects the inadequacy of its generation by
the non-degenerate Rayleigh-Schrödinger recipe.
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5 Summary

We believe that several Nanayakkara’s numerically supported conclusions
of ref. [1] were premature. Here we are offering their following modified
versions.

• All quantum Hamiltonians associated with the real Barbanis’ potential
(1) are ill defined. There are either no bound states or, if they do
exist, they are embedded in the continuum. Their apparent variational
convergence as observed in ref. [1] is spurious. The latter observation
makes the majority of conclusions concerning the classical and quantum
correspondence of the system presented in [1] unsubstantiated.

• For the well-defined quasi-Hermitian quantum Hamiltonians related to
the imaginary Barbanis potential (1), no avoided level crossings were
found in our calculations. We tend to the view that in this model,
all the crossings are the genuine points of degeneracy. Even in this
dynamical setting, a really unfortunate and unexpected degeneracy of
the unperturbed levels as chosen in ref. [1] leaves both the employed
non-degenerate perturbation method and its results entirely inapplica-
ble.

Thus, we may summarize that in the Hermitian-like dynamical regime with
g > 0 the Nanayakkara’s variational energies must in fact diverge to −∞. In
the language of physics this means that the quantized system would collapse
[or rather, in the light of (3), “explode” in two directions in the x > 0 half-
plane] immediately after the parameter g becomes negative.

In the alternative PT-symmetric, quasi-Hermitian and well-quantized
regime (i.e., at certain sufficiently small and negative g < 0 at least), we
easily spotted the reason of the failure of the Nanayakkara’s perturbation
results. Hence, their improvement might be achieved after a transition to
the degenerate Rayleigh-Schrödinger formalism.
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Table 1: Values (and ordering) of the unperturbed energy levels (4)

n 0 1 2 3 4 5 · · ·
N

0 0 (0th) 7 (1st) 14 (3rd) 21 (5th) 28 (8th) 35 (11th) · · ·
1 13 (2nd) 20 (4th) 27 (7th) 34 (10th) 41 (14th) 48 (18th) · · ·
2 26 (6th) 33 (9th) 40 (13th) 47 (17th) 54 (22nd) 61 (27th) · · ·
3 39 (12th) 46 (16th) 53 (21st) 60 (26th) 67 (32nd) 74 (38th) · · ·

Figure captions

Figure 1 Energy crossings for the perturbed circular (left) and elliptic
(right) models (1).

Figure 2 Contour plots of real and imaginary parts of the 72nd and 73rd
wave functions of (1) for ωx = 0.7, ωy = 1.3, and g = −0.002.

Table captions

Table 1. Values (and ordering) of the unperturbed en-
ergy levels (4)
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