Zentralblatt MATH - REVIEW SUBMISSION FORM |
Zentralblatt MATH
HOME
|
Name: | ||||||||||||||||
Miloslav Znojil | ||||||||||||||||
Reviewer number: | ||||||||||||||||
9689 | ||||||||||||||||
Email: | ||||||||||||||||
znojil@ujf.cas.cz | ||||||||||||||||
Item's zbl-Number: | ||||||||||||||||
DE 0159 55102 | ||||||||||||||||
Author(s): | ||||||||||||||||
Plestenjak, Bor: | ||||||||||||||||
Shorttitle: | ||||||||||||||||
A continuation method for a weakly elliptic two-parameter eigenvalue problem | ||||||||||||||||
Source: | ||||||||||||||||
IMA J. Numer. Anal. 21, No. 1, 199 - 216 (2001). | ||||||||||||||||
Classification: | ||||||||||||||||
Primary Classification:
|
| Secondary Classification: |
|
Keywords:
| eigenvalue problem; two-parametric matrix pencils; weakly elliptic; continuation method; homotopy bifurcation; | Review: | The method of solving eigenvalue problems for real non-symmetric matrices as proposed by Li et al in 1992 is generalized to the two-parametric matrix pencils. The key idea remains the same (using an auxiliary parametric ``move" to a facilitated problem where all eigenvalues are algebraically simple) but the generalization is not easy (e.g., there exist no ``easy" curves of solutions anymore). A careful discussion is required and offered both on the theoretical level (paying attention to the cases where the matrices are large and/or where the algorithms have to be parallelized) and on the level of implementation (where, e.g., the numerical process can switch from one solution curve to another). In tests, a subtle balance is shown to exist between the number of re-calculated continuation curves and the number of operations in the initial stage. Remarks to the editors: |
| |