Zentralblatt MATH - REVIEW SUBMISSION FORM |
Zentralblatt MATH
HOME
|
Name: | ||||||||||||||
Miloslav Znojil | ||||||||||||||
Reviewer number: | ||||||||||||||
9689 | ||||||||||||||
Email: | ||||||||||||||
znojil@ujf.cas.cz | ||||||||||||||
Item's zbl-Number: | ||||||||||||||
DE 0151 98 483 | ||||||||||||||
Author(s): | ||||||||||||||
Bertaccini, D.: | ||||||||||||||
Shorttitle: | ||||||||||||||
A circulant preconditioner for LMF-based ODE codes | ||||||||||||||
Source: | ||||||||||||||
SIAM J. Sci. Comput. 22, No. 3, 767 - 786 (2000). | ||||||||||||||
Classification: | ||||||||||||||
Primary Classification: | ||||||||||||||
| ||||||||||||||
Secondary Classification: | ||||||||||||||
Keywords:
| ordinary differential equations; implicit linear multistep formulas; boundary value methods; block unsymmetric Toeplitz lionear systems; circulant preconditioning | Review: | With the emphasis on possible practical applications to ordinary differential equations (solved via implicit formulas and, in this setting, via reduction to a large and unsymmetric sparse linear problem in each integration step) a proposal is made that the preconditioner should be chosen in a block circulant form. Special attention is paid to the linear multistep formula techniques leading to the band (and unsymmetric) Toeplitz structures of matrices. The preference is then recommended of the so called P-circulant preconditioners. The knowledge of their spectal properties simplifies the abstract analysis of convergence, confirmed persuasively by numerical tests. Remarks to the editors: |
| |