PUBLICATIONS
2020
REFEREED JOURNALS
-
Denis I. Borisov, Dmitry A. Zezyulin and
Miloslav Znojil,
Bifurcations of thresholds in essential spectra
of elliptic
operators under localized non-Hermitian perturbations.
Studies in Applied Mathematics, in print.
(arXiv:2007.02258)
-
Miloslav Znojil et al,
The number of decompositions of F(n,1).
The on-line encyclopedia of integer sequences,
sequence number A 335631
OPEN ACCESS:
http://oeis.org/A335631
(see also
arXiv:2010.15014, Appendix A.2)
-
Miloslav Znojil et al,
The number of decompositions of H(n,1).
The on-line encyclopedia of integer sequences,
sequence number A 336739
OPEN ACCESS:
http://oeis.org/A336739
(see also
arXiv:2010.15014, Appendix A.1)
-
Miloslav Znojil,
Quantum phase transitions in nonhermitian harmonic oscillator.
Scientific Reports 10(1) (2020)
18523
OPEN ACCESS
(paid by
UHK):
DOI:
10.1038/s41598-020-75468-w, 9 pages,
preliminary version:
Hilbert spaces of states of PT-symmetric harmonic oscillator near
exceptional points
(arXiv:2008.04012)
-
Miloslav Znojil,
Unitary unfoldings of Bose-Hubbard exceptional point
with and without
particle number conservation.
Proceedings of the Royal Society A:
Mathematical, Physical & Engineering Sciences A 476 (2242) (2020) 20200292 .
DOI:
10.1098/rspa.2020.0292, 19 pages
(arXiv:2008.12844)
-
Miloslav Znojil
,
Perturbation theory near degenerate exceptional points.
SYMMETRY 2020, 12(8), 1309 (05 Aug 2020);
section:
Physics and Symmetry
OPEN ACCESS:
DOI: 10.3390/sym12081309
(special issue
Symmetries in Quantum Mechanics and Statistical Physics,
G. Junker, Ed.)
(arXiv:2008.00479)
-
Miloslav Znojil and Denis I. Borisov,
Anomalous mechanisms of the loss of observability
in non-Hermitian quantum models
.
Nuclear Physics B, Volume 957, August 2020, 115064
OPEN ACCESS:
DOI: 10.1016/j.nuclphysb.2020.115064
(arXiv:2005.13069)
-
Miloslav Znojil,
Relocalization switch in a triple quantum dot molecule in 2D
.
Modern Physics Letters B 34, No. 33 (2020) 2050378 (8 pages)
DOI: 10.1142/S0217984920503789
(arXiv:2005.06934)
-
Miloslav Znojil
,
Supersymmetry and exceptional points.
SYMMETRY 12, no. 6 (2020),
paper 892 .
OPEN ACCESS:
DOI: 10.3390/sym12060892
(section
"Computer and Engineer Science and Symmetry"
special issue
Supersymmetry in Integrable Systems, S. Krivonos, Ed.)
(arXiv:2005.04508)
-
Raymond F. Bishop and Miloslav Znojil,
Non-Hermitian coupled cluster method
for non-stationary systems
and its interaction-picture reinterpretation
.
Eur. Phys. J. Plus 135 (4), 374 (2020)
OPEN ACCESS:
DOI: 10.1140/epjp/s13360-020-00374-z
(arXiv:1908.03780v2)
.........
link to PDF
-
Miloslav Znojil,
Polynomial potentials and coupled quantum dots in two and three
dimensions.
Annals of Physics 416
(2020) 168161
DOI: 10.1016/j.aop.2020.168161
(arXiv:2003.06501)
-
Miloslav Znojil,
Passage through exceptional point: Case study.
Proceedings of the Royal Society A:
Mathematical, Physical & Engineering Sciences
476 (2236) (2020) 20190831.
DOI:
10.1098/rspa.2019.0831, 15 pages
(arXiv:2003.05876)
-
Miloslav Znojil
,
Theory of Response to Perturbations in Non-Hermitian
Systems
Using Five-Hilbert-Space Reformulation
of Unitary Quantum Mechanics.
ENTROPY 22, 000080 (2020)
OPEN ACCESS (paid by
DUT):
DOI: 10.3390/e22010080, 20 pages,
(arXiv:1908.03017)
(Quantum
Information section,
special issue
Quantum Dynamics with Non-Hermitian Hamiltonians, ed. by A. Sergi)
-
Miloslav Znojil
,
Arnold's potentials and quantum catastrophes.
Annals of Physics 413 (2020) 168050
DOI: 10.1016/j.aop.2019.168050, 20 pages
(arXiv:1912.06223).
BOOK CHAPTERS
-
Miloslav Znojil,
Three-Hilbert-space formulation of quantum theory:
unitary evolution via non-Hermitian Hamiltonians.
in "Topics in Mathematical Physics, Quantum Physics and
Path Integrals",
written version of
the series of 6 lectures
for the
"4-th Jijel School of Theoretical Physics"
(25. - 29. IX. 2016), in print.
Ed. Abdelhafid Bounames and Abdenacer Makhlouf, ISTE-Wiley Editions, 2021,
Chapter 2, pp. 79 - 126.
Notes:
(a)
reprints available
upon
e-mailed
request.
(b)
(c) undated updates