1. Denis I. Borisov, Dmitry A. Zezyulin and Miloslav Znojil,
    Bifurcations of thresholds in essential spectra
    of elliptic operators under localized non-Hermitian perturbations.

    Studies in Applied Mathematics, in print.

  2. Miloslav Znojil et al,
    The number of decompositions of F(n,1).
    The on-line encyclopedia of integer sequences,
    sequence number A 335631
    (see also arXiv:2010.15014, Appendix A.2)

  3. Miloslav Znojil et al,
    The number of decompositions of H(n,1).
    The on-line encyclopedia of integer sequences,
    sequence number A 336739
    (see also arXiv:2010.15014, Appendix A.1)

  4. Miloslav Znojil,
    Quantum phase transitions in nonhermitian harmonic oscillator.
    Scientific Reports 10(1) (2020) 18523
    OPEN ACCESS (paid by UHK): DOI: 10.1038/s41598-020-75468-w, 9 pages,
    preliminary version:
    Hilbert spaces of states of PT-symmetric harmonic oscillator near exceptional points

  5. Miloslav Znojil,
    Unitary unfoldings of Bose-Hubbard exceptional point
    with and without particle number conservation.

    Proceedings of the Royal Society A:
    Mathematical, Physical & Engineering Sciences A 476 (2242) (2020) 20200292
    DOI: 10.1098/rspa.2020.0292, 19 pages

  6. Miloslav Znojil ,
    Perturbation theory near degenerate exceptional points.
    SYMMETRY 2020, 12(8), 1309 (05 Aug 2020); section: Physics and Symmetry
    OPEN ACCESS: DOI: 10.3390/sym12081309
    (special issue Symmetries in Quantum Mechanics and Statistical Physics, G. Junker, Ed.)

  7. Miloslav Znojil and Denis I. Borisov,
    Anomalous mechanisms of the loss of observability in non-Hermitian quantum models .
    Nuclear Physics B, Volume 957, August 2020, 115064
    OPEN ACCESS: DOI: 10.1016/j.nuclphysb.2020.115064

  8. Miloslav Znojil,
    Relocalization switch in a triple quantum dot molecule in 2D .
    Modern Physics Letters B 34, No. 33 (2020) 2050378 (8 pages)
    DOI: 10.1142/S0217984920503789

  9. Miloslav Znojil ,
    Supersymmetry and exceptional points.
    SYMMETRY 12, no. 6 (2020), paper 892 .
    OPEN ACCESS: DOI: 10.3390/sym12060892
    (section "Computer and Engineer Science and Symmetry"
    special issue Supersymmetry in Integrable Systems, S. Krivonos, Ed.)

  10. Raymond F. Bishop and Miloslav Znojil,
    Non-Hermitian coupled cluster method for non-stationary systems
    and its interaction-picture reinterpretation
    Eur. Phys. J. Plus 135 (4), 374 (2020)
    OPEN ACCESS: DOI: 10.1140/epjp/s13360-020-00374-z
    ......... link to PDF

  11. Miloslav Znojil,
    Polynomial potentials and coupled quantum dots in two and three dimensions.
    Annals of Physics 416 (2020) 168161
    DOI: 10.1016/j.aop.2020.168161

  12. Miloslav Znojil,
    Passage through exceptional point: Case study.
    Proceedings of the Royal Society A:
    Mathematical, Physical & Engineering Sciences
    476 (2236) (2020) 20190831.
    DOI: 10.1098/rspa.2019.0831, 15 pages

  13. Miloslav Znojil ,
    Theory of Response to Perturbations in Non-Hermitian Systems
    Using Five-Hilbert-Space Reformulation of Unitary Quantum Mechanics
    ENTROPY 22, 000080 (2020)
    OPEN ACCESS (paid by DUT): DOI: 10.3390/e22010080, 20 pages,
    (Quantum Information section, special issue
    Quantum Dynamics with Non-Hermitian Hamiltonians, ed. by A. Sergi)

  14. Miloslav Znojil ,
    Arnold's potentials and quantum catastrophes.
    Annals of Physics 413 (2020) 168050
    DOI: 10.1016/j.aop.2019.168050, 20 pages


  16. Miloslav Znojil,
    Three-Hilbert-space formulation of quantum theory:
    unitary evolution via non-Hermitian Hamiltonians.

    in "Topics in Mathematical Physics, Quantum Physics and Path Integrals",
    written version of the series of 6 lectures for the
    "4-th Jijel School of Theoretical Physics" (25. - 29. IX. 2016), in print.
    Ed. Abdelhafid Bounames and Abdenacer Makhlouf, ISTE-Wiley Editions, 2021,
    Chapter 2, pp. 79 - 126.

(a) reprints available upon e-mailed request.
SCImago Journal & Country Rank
(c) undated updates