PAPERS 2014







REFEREED PUBLICATIONS




  1. Denis I. Borisov, Frantisek Ruzicka and Miloslav Znojil,
    Multiply Degenerate Exceptional Points and Quantum Phase Transitions.
    Int. J. Theor. Phys. , in print
    http://dx.doi.org/10.1007/s10773-014-2493-y
    (arXiv:1412.6634)


  2. Miloslav Znojil,
    Quantum star-graph analogues of PT-symmetric square wells. II: Spectra
    Can. J. Phys., in print
    (arXiv:1411.3828)


  3. Francisco M. Fernandez, Javier Garcia, Iveta Semoradova and Miloslav Znojil,
    Ad hoc physical Hilbert spaces in Quantum Mechanics.
    Int. J. Theor. Phys., in print,
    DOI: 10.1007/s10773-014-2376-2
    (arXiv:1405.7284)


  4. Miloslav Znojil,
    Solvable non-Hermitian discrete square well with closed-form physical inner product.
    J. Phys. A: Math. Theor. 47 (2014) 435302
    doi:10.1088/1751-8113/47/43/435302
    (arXiv:1409.3788)
    (=> published online)


  5. Geza Levai, Frantisek Ruzicka and Miloslav Znojil,
    Three solvable matrix models of a quantum catastrophe.
    Int. J. Theor. Phys. 53 (2014) 2875 - 2890
    http://dx.doi.org/10.1007/s10773-014-2085-x
    (arXiv:1403.0723)


  6. Miloslav Znojil,
    The large-g observability of the low-lying energies in the strongly singular potentials $V(x)=x^2+g^2/x^6$ after their PT-symmetric regularization.
    Int. J. Theor. Phys. 53 (2014) 2549-2557
    http://dx.doi.org/10.1007/s10773-014-2052-6
    (arXiv:1401.1435)


  7. Raymond F. Bishop and Miloslav Znojil,
    The coupled-cluster approach to quantum many-body problem in a three-Hilbert-space reinterpretation.
    Acta Polytechnica 54 (2014), no. 2, pp. 85 - 92
    http://dx.doi.org/10.14311/AP.2014.54.0085
    (arXiv:1311.6295)





A CHAPTER IN BOOK



  1. Miloslav Znojil:
    "Non-selfadjoint operators in quantum physics: ideas, people and trends",
    in "Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects",
    Fabio Bagarello, Jean-Pierre Gazeau, Franciszek H. Szafraniec, and Miloslav Znojil, editors,
    pp. 1 - 57, (c) 2015 John Wiley & Sons, Inc.
    (to be published, during spring 2015, by John Wiley & Sons, Inc.; first edition).







OTHER PUBLICATIONS



  1. Miloslav Znojil,
    Special issue on Pseudo-Hermitian Hamiltonians in Quantum Physics
    (the guest-editor`s preface, including also a photo from Setif)
    Int. J. Theor. Phys., in print
    http://dx.doi.org/10.1007/s10773-014-2501-2


  2. Miloslav Znojil,
    Special issue on the Theory and Application of Analytic and Algebraic Methods in Physics
    (the guest-editor`s preface)
    Acta Polytechnica 54 (2014), no. 2, pp. vii - ix


  3. F. Bagarello, J. P. Gazeau, F. H. Szafraniec, and M. Znojil:
    "Preface",
    in "Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects",
    Fabio Bagarello, Jean-Pierre Gazeau, Franciszek H. Szafraniec, and Miloslav Znojil, editors,
    pp. xv - xvi, (c) 2015 John Wiley & Sons, Inc.
    (to be published, during spring 2015, by John Wiley & Sons, Inc.; first edition).

  4. F. Bagarello, J. P. Gazeau, F. H. Szafraniec, and M. Znojil:
    "Introduction",
    in "Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects",
    Fabio Bagarello, Jean-Pierre Gazeau, Franciszek H. Szafraniec, and Miloslav Znojil, editors,
    pp. xxiii - xxvii, (c) 2015 John Wiley & Sons, Inc.
    (to be published, during spring 2015, by John Wiley & Sons, Inc.; first edition).

  5. Miloslav Znojil,
    a series of extended abstracts (see their current list )
    published - or in print - in Mathematical Reviews.




Note: Reprints available upon an e-mailed request.
undated updates