PAPERS 2008






TEXTS IN REFEREED JOURNALS




  1. Miloslav Znojil,
    Time-dependent version of cryptohermitian quantum theory
    Phys. Rev. D 78 (2008) 085003
    (doi: 10.1103/PhysRevD.78.085003)
    (arXiv:0809.2874v1 [quant-ph] 17 Sep 2008)

  2. Miloslav Znojil,
    Discrete PT-symmetric models of scattering
    J. Phys. A: Math. Theor. 41 (2008) 292002
    (arXiv:0806.2019v1 [quant-ph] 12 Jun 2008)

  3. Miloslav Znojil,
    Scattering theory with localized non-Hermiticities
    Phys. Rev. D 78, 025026 (2008)
    (or click via doi: 10.1103/PhysRevD.78.025026)
    (arXiv:0805.2800v1 [hep-th] 19 May 2008)

  4. Miloslav Znojil,
    Identification of observables in quantum toboggans
    J. Phys. A: Math. Theor. 41 (2008) 215304.
    (arXiv:0803.0403v1 [quant-ph] 4 Mar 2008
    and 0803.0403v2 [quant-ph] 21 Apr 2008)

  5. Andreas Fring and Miloslav Znojil,
    PT-symmetric deformations of Calogero models.
    J. Phys. A: Math. Theor. 41 (2008) 194010.
    electronic and doi:10.1088/1751-8113/41/19/194010
    (arXiv: 0802.0624v1 [quant-ph] 5 Feb 2008)


  6. Miloslav Znojil,
    Conditional observability versus self-duality in a schematic model.
    J. Phys. A: Math. Theor. 41 (2008) 304027,
    electronic and doi:10.1088/1751-8113/41/30/304027
    (arXiv: 0710.0457v2 [quant-ph] 17 Feb 2008)


  7. Miloslav Znojil,
    Quantum toboggans: models exhibiting a multisheeted PT symmetry
    J. Phys.: Conference Series 128 (2008) 012046 (12pp)
    {IOP, ISSN 1742-6588 (Print), ISSN 1742-6596 (Online)}
    [written version of the talk in Valladolid (QTS5)]
    doi: 10.1088/1742-6596/128/1/012046
    (arXiv:0710.1485v1 [quant-ph] 8 Oct 2007)

  8. Miloslav Znojil,
    Quantum knots.
    Phys. Lett. A 372/20 pp 3591-3596 (2008)
    doi: 10.1016/j.physleta.2008.02.016

    (arXiv: 0802.1318v1 [quant-ph] 10 Feb 2008)


  9. Miloslav Znojil,
    Horizons of stability.
    J. Phys. A: Math. Theor. 41 (2008) 244027
    electronic and doi:10.1088/1751-8113/41/24/244027
    (arXiv: 0801.0359 [math-ph] 2 Jan 2008)


  10. Miloslav Znojil,
    On the role of the normalization factors $\kappa_n$
    and of the pseudo-metric P in crypto-Hermitian quantum models.

    SYMMETRY, INTEGRABILITY and GEOMETRY: METHODS and APPLICATIONS
    SIGMA 4 (2008), 001, 9 pages;
    (arXiv: 0710.4432v3 [math-ph] 2 Jan 2008)


  11. Jun-Hua Chen, Edita Pelantova and Miloslav Znojil,
    Classification of the conditionally observable spectra exhibiting central symmetry.
    Phys. Lett. A, Volume 372, Issue 12, 17 March 2008, Pages 1986-1989;
    available in electronic form: doi:10.1016/j.physleta.2007.11.015
    (arXiv: 0711.3947v1 [math-ph] 26 Nov 2007)


  12. Miloslav Znojil,
    Quantum toboggans with two branch points
    Phys. Lett. A 372, Issue 5, 28 January 2008, Pages 584-590
    http://dx.doi.org/10.1016/j.physleta.2007.07.072
    (arXiv:0708.0087v1 [quant-ph] 1 Aug 2007)

  13. A. Fring, H. Jones and M. Znojil,
    editorial preface:
    J. Phys. A: Math. Theor., vol. 41, Nr. 24 (2008) 240301





TEXTS IN BOOKS