PAPERS 2002
|
- O. Mustafa and M. Znojil,
PT symmetric pseudo-perturbation recipe: an imaginary cubic oscillator with spikes
(math-ph/0206042),
J. Phys. A: Math. Gen. 35 (2002) 8929 - 8942.
- G. Levai and M. Znojil,
The interplay of supersymmetry and ${\cal PT}$ symmetry
in quantum mechanics: a case study for the Scarf II potential
(quant-ph/0206013),
J. Phys. A: Math. Gen. 35 (2002) 8793 - 8804.
- M. Znojil,
A generalization of the concept of PT symmetry
(math-ph/0106021),
in
``Quantum Theory and Symmetries", ed. E. Kapuscik and A. Horzela,
Word Sci., Singapore,2002, pp. 626-631.
- M. Znojil,
Should PT symmetric quantum mechanics be
interpreted as nonlinear?
(quant-ph/0103054v4),
J. Nonlin. Math. Phys. 9, suppl. 2 (2002), 122-133
(= special issue on Lie Symmetry Analysis and Applications,
in honour of the 60th birthday of Peter Leach).
- M. Znojil, F. Gemperle and O. Mustafa,
Asymptotic solvability of an imaginary cubic oscillator with spikes
(hep-th/0205181),
J. Phys. A: Math. Gen. 35 (2002) 5781 - 5793.
- M. Znojil,
Solvable PT-symmetric Hamiltonians
(quant-ph/0008125),
Physics of Atomic Nuclei 65 (2002) 1149 - 1151
= the
English version of
Yad. Fiz. 65 (2002), 1182-1184.
- M. Znojil,
Non-Hermitian SUSY and singular, PT-symmetrized oscillators
(hep-th/0201056),
J. Phys. A: Math. Gen. 35 (2002) 2341 - 2352.
- M. Znojil,
Generalized Rayleigh-Schr\"{o}dinger perturbation theory as a
method of linearization of the so called quasi-exactly solvable
models
(math-ph/0101015v2)
Proc. Inst. Math. NAS (Ukraine), Vol. 43, Part 2 (2002), pp 777 - 781.
Note: Reprints available
upon an
e-mailed
request.
undated updates