1. O. Mustafa and M. Znojil,
    PT symmetric pseudo-perturbation recipe: an imaginary cubic oscillator with spikes
    (math-ph/0206042), J. Phys. A: Math. Gen. 35 (2002) 8929 - 8942.

  2. G. Levai and M. Znojil,
    The interplay of supersymmetry and ${\cal PT}$ symmetry in quantum mechanics: a case study for the Scarf II potential
    (quant-ph/0206013), J. Phys. A: Math. Gen. 35 (2002) 8793 - 8804.

  3. M. Znojil,
    A generalization of the concept of PT symmetry
    (math-ph/0106021), in ``Quantum Theory and Symmetries", ed. E. Kapuscik and A. Horzela, Word Sci., Singapore,2002, pp. 626-631.

  4. M. Znojil,
    Should PT symmetric quantum mechanics be interpreted as nonlinear?
    (quant-ph/0103054v4), J. Nonlin. Math. Phys. 9, suppl. 2 (2002), 122-133
    (= special issue on Lie Symmetry Analysis and Applications, in honour of the 60th birthday of Peter Leach).

  5. M. Znojil, F. Gemperle and O. Mustafa,
    Asymptotic solvability of an imaginary cubic oscillator with spikes
    (hep-th/0205181), J. Phys. A: Math. Gen. 35 (2002) 5781 - 5793.

  6. M. Znojil,
    Solvable PT-symmetric Hamiltonians
    (quant-ph/0008125), Physics of Atomic Nuclei 65 (2002) 1149 - 1151
    = the English version of
    Yad. Fiz. 65 (2002), 1182-1184.

  7. M. Znojil,
    Non-Hermitian SUSY and singular, PT-symmetrized oscillators
    (hep-th/0201056), J. Phys. A: Math. Gen. 35 (2002) 2341 - 2352.

  8. M. Znojil,
    Generalized Rayleigh-Schr\"{o}dinger perturbation theory as a method of linearization of the so called quasi-exactly solvable models
    (math-ph/0101015v2) Proc. Inst. Math. NAS (Ukraine), Vol. 43, Part 2 (2002), pp 777 - 781.

Note: Reprints available upon an e-mailed request.
undated updates